• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA-SP) Questão de Equações Algébricas

(ITA-SP) Questão de Equações Algébricas

Mensagempor Carolziiinhaaah » Sáb Jun 19, 2010 12:11

Sejam a1, a2, a3 e a4 números reais formandos,
nesta ordem, uma progressão geométrica crescente com a1 ? 0.
Sejam x1, x2 e x3 as raízes de a1x^3 + a2x^2 + a3x + a4 = 0.
Resolva a equação sabendo que x1 = 2i.

gabarito: S = {-2; \pm 2i}
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (ITA-SP) Questão de Equações Algébricas

Mensagempor Douglasm » Sáb Jun 19, 2010 21:44

A primeira coisa que notamos aqui é que -2i também é raiz. Agora calculamos P(2i) e P(-2i):

P(2i) = a_1(2i)^3 + a_2(2i)^2 + a_3(2i) + a_4 = 0 \; \therefore \;

P(2i) = (-8i)a_1-(4)a_2+(2i)a_3+a4

P(-2i) = a_1(-2i)^3 + a_2(-2i)^2 + a_3(-2i) + a_4 = 0 \; \therefore \;

P(-2i) = (8i)a_1-(4)a_2-(2i)a_3+a4

Somando P(2i) e P(-2i), encontramos:

-8a_2 + 2a_4 = 0 \; \therefore \; a_4 = 4 a_2

Como os coeficientes estão em uma progressão geométrica crescente, sabemos que:

a_4 = a_2.q^2 \; \therefore \; a_4 = 4 a_2 \; \therefore \; q=2

Deste modo temos:

a_4 = 8a_1 \; ; \; a_3 = 4a_1 \; ; \; a_2 = 2a_1

Lembrando que a soma das raízes da equação é dada por \frac{-a_2}{a_1}:

S_g = \frac{-a_2}{a_1} = \frac{-2a_1}{a_1} = -2 = 2i - 2i + \alpha

Concluímos que a terceira raiz é -2.

S = [-2\;,\;-2i\;,\;2i]

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (ITA-SP) Questão de Equações Algébricas

Mensagempor Carolziiinhaaah » Dom Jun 20, 2010 15:26

Entendi *-*
Obrigada Douglas!
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Álgebra Elementar

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: