• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Aritmética modular

Aritmética modular

Mensagempor Lorenzo » Qui Jun 17, 2010 22:41

Estou com problemas em aritmética modular, por isso estou enviando esta pergunta:

(OBM) Encontre todos os inteiros a > 0 e b > 0 tais que:
4 . 3^a = 11+ 5^b

Na resolução percebi que é analisada a equação módulo 5. Assim:

4 . 3^a = 1 (mod 5) O problema é agora, daí conclui-se que "a" é par, e depois(em outra análise) que "b" também é par, só que eu não entendo como se da essa conclusão. Talvez haja alguma propriedade que não conheço. Por favor explique com detalhes.
Lorenzo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 13, 2010 21:12
Formação Escolar: ENSINO MÉDIO
Área/Curso: pretendo engenharia civil
Andamento: cursando

Re: Aritmética modular

Mensagempor Tom » Sex Jul 02, 2010 23:28

Desejamos encontrar as soluções naturais (a,b) para a equação 4.3^a=11+5^b

Ora, 11+5^b\equiv1\pmod{5}, para todo b. Logo 4.3^a\equiv1\pmod{5} e como 4 é inversível a 4 módulo cinco, então devemos ter 3^a\equiv4\pmod{5}

Analisando a congruência módulo cinco para as potências de três, temos:

3^1\equiv3\pmod{5}
3^2\equiv4\pmod{5}
3^3\equiv2\pmod{5}
3^4\equiv1\pmod{5}

A partir daí as potências vão deixando os mesmos resíduos de modo a concluirmos que:


3^{4t+1}\equiv3\pmod{5}
3^{4t+2}\equiv4\pmod{5}
3^{4t+3}\equiv2\pmod{5}
3^{4t}\equiv1\pmod{5}

Assim, como 3^a\equiv4\pmod{5}, então : a=4t+2, com t\in \mathbb{N}; que equivale a a\equiv2\pmod{4}, isto é, a é par!


Analisemos a equação à luz da congruência em módulo três: Para satisfazer a igualdade devemos ter 11+5^b\equiv0\pmod{3}, isto é, 5^b\equiv1\pmod{3}

Analisando a congruência módulo três para as potências de cinco, temos:

5^1\equiv2\pmod{3}
5^2\equiv1\pmod{3}
5^3\equiv2\pmod{3}
5^4\equiv1\pmod{3}

Analogamente, podemos concluir que : 5^{2k+1}\equiv2\pmod{3} e 5^{2k}\equiv1\pmod{3} . Assim, como 5^b\equiv1\pmod{3}, então b=2k, com k\in \mathbb_{N}, isto é, b é par!


Como a,b são ambos pares; sem perda de generalidade diremos que : a=2x e b=2k, com x,k, \in \mathbb_{N}; então:

4.3^{2x}=11+5^{2k}\rightarrow 2^2.3^{2x}-5^{2k}=11\rightarrow (2.3^x)^2-(5^k)^2=11, isto é, (2.3^x-5^k)(2.3^x+5^k)=11 e como 11 é primo, devemos ter:

(2.3^x-5^k)=1 (i)
(2.3^x+5^k)=11 (ii)

já que o primeiro fator é sempre menor que o segundo fator e ambos são naturais devido as condições de contorno do problema.


Somando (i) e (ii) : 4.3^x=12\rightarrow x=1
Subtraindo (i) de (ii): 2.5^k=10\rightarrow k=1

Assim só existe um único valor para a e um único valor para b que satisfazem, simultaneamente, a equação. Concluímos, portanto, que (a,b)=(2,2) é a única solução da equação.





Ps. Dava pra encurtar a resolução, mas como o Lorenzo pediu detalhes, achei melhor pormenorizar para ficar mais claro.
Tom
Tom
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 75
Registrado em: Sex Jul 02, 2010 00:42
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Automação e Controle Industrial
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.