• Anúncio Global
    Respostas
    Exibições
    Última mensagem

(ITA) Questão de PG

(ITA) Questão de PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 18:31

Determine o conjunto de todos os valores reais q tal que q > 1, para os quais a1, a2, a3 formam, nessa ordem, uma PG de razãoq e representam as medidas dos lados de um triângulo.

gabarito: q \in1 \;\;] 1 \frac{\sqrt[]{5}+1}{2}[
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: (ITA) Questão de PG

Mensagempor Douglasm » Qua Jun 16, 2010 20:56

Boa noite. Para resolver essa questão vamos fazer uso de uma desigualdade presente em qualquer triângulo: o lado maior sempre será menor que a soma dos outros dois.

Vamos chamar os lados de a_1 \; , \;  a_1.q \; e \; a_1.q^2 (em ordem crescente, notando que os lados formam uma P.G.).

Agora é só aplicar a desigualdade:

a_1.q^2 \; < \; a_1 + a_1.q  \; \therefore

a_1q^2 \; < \; a_1(1+q) \; \therefore

q^2 - q - 1 \; < \; 0

Essa inequação nos dá como resultado o intervalo \left]\frac{1-\sqrt{5}}{2} \; , \; \frac{1+\sqrt{5}}{2}\right[.

Mas como sabemos que q > 1, ficamos com:

q \; \in \; \left]1 \; , \; \frac{1+\sqrt{5}}{2}\right[

E está ai a resposta. Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: (ITA) Questão de PG

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 21:00

Show :-D Valeu Douglas!
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?