• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Soma de uma série em Progressão

Soma de uma série em Progressão

Mensagempor Carolziiinhaaah » Qua Jun 16, 2010 12:06

Calcule a soma da série: \frac{1}{3} + \frac{2}{9} + \frac{3}{27} + \frac{4}{81} + ... .

gabarito: 3/4
Avatar do usuário
Carolziiinhaaah
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 77
Registrado em: Sex Mai 28, 2010 14:12
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: Soma de uma série em Progressão

Mensagempor Elcioschin » Qua Jun 16, 2010 13:18

1/3 + 2/9 + 3/27 + 4/81 + .....

1/3 + (1/9 + 1/9) + (1/27 + 2/27) + (1/81 + 3/81) + .....

(1/3 + 1/9 + 1/27 + 1/81 + ....) + (1/9 + 2/27 + 3/81 + .....)

Soma dos termos do primeiro parenteses é uma PG infinita de razão 1/3 ----> Sa = (1/3)/(1- 1/3) ----> Sa = 1/2

Segundo parenteses ----> 1/9 + 2/27 + 3/81 + .....

1/9 + (1/27 + 1/27) + (1/181 + 2/81) + .....

(1/9 + 1/27 + 1/81 + ....) + (1/27 + 2/81 + .....)

Soma dos termos do primeiro parenteses é uma PG infinta de razão 1/3 ----> Sb = (1/9)/(1- 1/3) ----> Sa = 1/6

Segundo parenteses ----> 1/27 + 2/81 + .......

1/27 + (1/81 + 1/81) + .....

(1/27 + 1/81 + .....) + (1/81 + .....)

Soma dos termos do primeiro parenteses é uma PG infinita de razão 1/3 ----> Sa = (1/27)/(1- 1/3) ----> Sc = 1/18

E assim por diante, teremos ----> S = Sa + Sb + Sc + ...... ----> S = 1/2 + 1/6 + 1/18 + .....

Temos uma nova PG infinta de razão 1/3 -----> S = (1/2)/(1 - 1/3) -----> S = 3/4
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Progressões

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: