• Anúncio Global
    Respostas
    Exibições
    Última mensagem

me ajudem ai !!

me ajudem ai !!

Mensagempor weverton » Ter Jun 15, 2010 23:45

O termo (k,2,k+1) é uma solução da equação linear 4x+5y-3z=10. Determine k

quem souber e puder me ajudar me explique passo a passo como achar o (K)!
weverton
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 62
Registrado em: Sex Mai 14, 2010 01:27
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: enfermagem
Andamento: formado

Re: me ajudem ai !!

Mensagempor Mathmatematica » Qua Jun 16, 2010 01:18

Oi Weverton!

Se o termo (k,2,k+1) é solução da equação 4x+5y-3z=10 então x=k, \ y=2 \ e \ z=k+1. Fazendo a substituição temos que:

4k+5.2-3(k+1)=10\Longrightarrow 4k+10-3k-3=10\Longrightarrow k=3.

Logo, k=3.

Espero ter ajudado!
Mathmatematica
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Sex Jun 04, 2010 23:53
Formação Escolar: ENSINO MÉDIO
Área/Curso: Bacharelado
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.