por Carolziiinhaaah » Qui Jun 03, 2010 17:30
Determinar a e b, de modo que a equação

admita duas e somente duas raízes nulas.
-

Carolziiinhaaah
- Usuário Parceiro

-
- Mensagens: 77
- Registrado em: Sex Mai 28, 2010 14:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Mathmatematica » Sáb Jun 05, 2010 04:12
Olá Carol. Vamos resolver essa questão.
Dos dados do enunciado, sabemos que a equação

tem duas de suas raízes iguais a zero. Isso significa que quando substituímos

na equação proposta, esta deverá resultar em zero. Também sabemos que somente duas de suas raízes são zero. Se essa informação não nos fosse dada, poderíamos admitir que essa equação teria todas as suas raízes iguais a zero (lembre-se que se um número complexo é raiz de uma equação então o seu conjugado também é raiz dessa equação).
A equação proposta é então semelhante a uma equação do tipo

, onde A, B, C e D são raízes da equação e

.

e é o termo que acompanha o termo de maior grau da equação. Da equação proposta no enunciado temos que

. Como nós temos duas raízes nulas façamos

. Teremos então a expressão

que é semelhante à expressão

. Então:

![x^2[x^2-(A+B)x+AB]\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6) x^2[x^2-(A+B)x+AB]\equiv x^4+3x^3+(3a-b)x^2+(a-b-3)x+(2a+b+6)](/latexrender/pictures/f92a85e02fc67ff9b85ed55df2b5e58d.png)

Sendo assim teremos:




Como só nos interessa saber os valores de a e b (e não das outras raízes), vamos resolver o sistema composto pelas últimas duas equações acima:


Somando as equações temos que:

Logo, para que a equação

tenha duas, e somente duas raízes nulas, a e b devem valer, respectivamente,

e

.
Observações:
_Qualquer erro, por favor, AVISEM!!!
-
Mathmatematica
- Usuário Dedicado

-
- Mensagens: 25
- Registrado em: Sex Jun 04, 2010 23:53
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Bacharelado
- Andamento: cursando
por Carolziiinhaaah » Seg Jun 14, 2010 14:05
Certinho! Resolução PERFEITA! Parabéns! Muuuuito obrigada ;D
-

Carolziiinhaaah
- Usuário Parceiro

-
- Mensagens: 77
- Registrado em: Sex Mai 28, 2010 14:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Equação Algébrica (c/ relações de Girard)
por Carolziiinhaaah » Sáb Jun 19, 2010 01:11
- 3 Respostas
- 2086 Exibições
- Última mensagem por Douglasm

Seg Jun 21, 2010 22:31
Álgebra Elementar
-
- Equação Algébrica de raiz dupla
por Carolziiinhaaah » Sáb Jun 19, 2010 01:16
- 1 Respostas
- 1763 Exibições
- Última mensagem por Douglasm

Dom Jun 20, 2010 09:39
Álgebra Elementar
-
- [equaçao algebrica] travei na resoluçao
por vera lucia » Ter Set 20, 2011 00:08
- 2 Respostas
- 1629 Exibições
- Última mensagem por MarceloFantini

Ter Set 20, 2011 18:38
Funções
-
- [equaçao algebrica] travei na resoluçao
por vera lucia » Ter Set 20, 2011 00:08
- 1 Respostas
- 1306 Exibições
- Última mensagem por Neperiano

Ter Set 20, 2011 13:13
Funções
-
- algébrica
por kakacarvalho84 » Sex Out 19, 2012 15:24
- 1 Respostas
- 1194 Exibições
- Última mensagem por Janildo Arantes

Sex Out 19, 2012 17:08
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
Proporcionalidade
Autor:
silvia fillet - Qui Out 13, 2011 22:46
Divida o numero 35 em partes diretamente proporcionais a 4, 10 e 14. Em seguida divida o mesmo numero em partes proporcionais a 6, 15 e 21. explique por que os resultados sao iguais.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Sáb Out 15, 2011 10:25
POR GENTILEZA PODEM VERIFICAR SE O MEU RACIOCINIO ESTÁ CERTO?
P1 = K.4 SUBSTITUINDO K POR 1,25 P1= 5
P2 = K.10 SUBSTITUINDO K POR 1,25 P2= 12,50
P3 = K.13 SUBSTITUINDO K POR 1,25 P3= 17,50
P1+P2+P3 = 35
K.4+K.10+K.13 = 35
28 K = 35
K= 1,25
P1 = K.6 SUBSTITUINDO K POR 0,835 P1= 5
P2 = K.15 SUBSTITUINDO K POR 0,835 P2 = 12,50
P3 = K.21 SUBSTITUINDO K POR 0,835 P3 = 17,50
K.6+K.15+K.21 = 35
42K = 35
K= 0,833
4/6 =10/15 =14/21 RAZÃO = 2/3
SERÁ QUE ESTÁ CERTO?
ALGUEM PODE ME AJUDAR A EXPLICAR MELHOR?
OBRIGADA
SILVIA
Assunto:
Proporcionalidade
Autor:
ivanfx - Dom Out 16, 2011 00:37
utilize a definição e não se baseie no exercícios resolvidos da redefor, assim você terá mais clareza, mas acredito que sua conclusão esteja correto, pois o motivo de darem o mesmo resultado é pq a razão é a mesma.
Assunto:
Proporcionalidade
Autor:
Marcos Roberto - Dom Out 16, 2011 18:24
Silvia:
Acho que o resultado é o mesmo pq as razões dos coeficientes e as razões entre os números são inversamente proporcionais.
Você conseguiu achar o dia em que caiu 15 de novembro de 1889?
Assunto:
Proporcionalidade
Autor:
deiasp - Dom Out 16, 2011 23:45
Ola pessoal
Tb. estou no redefor
O dia da semana em 15 de novembro de 1889, acredito que foi em uma sexta feira
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 06:23
Bom dia,
Realmente foi uma sexta feira, como fazer os calculos para chegar ?
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 07:18
Para encontrar o dia que caiu 15 de novembro de 1889 você deve em primeiro lugar encontrar a quantidade de anos bissextos que houve entre 1889 à 2011, após isso dá uma verificada no ano 1900, ele não é bissexto, pois a regra diz que ano que é múltiplo de 100 e não é múltiplo de 400 não é bissexto.
Depois calcule quantos dias dão de 1889 até 2011, basta pegar a quantidade de anos e multiplicar por 365 + 1 dia a cada ano bissexto (esse resultado você calculou quando encontrou a quantidade de anos bissextos)
Pegue o resultado e divida por 7 e vai obter o resto.
obtendo o resto e partindo da data que pegou como referência conte a quantidade do resto para trás da semana.
Assunto:
Proporcionalidade
Autor:
silvia fillet - Seg Out 17, 2011 07:40
Bom dia,
Será que é assim:
2011 a 1889 são 121 anos sendo , 30 anos bissextos e 91 anos normais então temos:
30x366 = 10.980 dias
91x365 = 33.215 dias
incluindo 15/11/1889 - 31/12/1889 47 dias
33215+10980+47 = 44242 dias
44242:7 = 6320 + resto 2
è assim, nâo sei mais sair disso.
Assunto:
Proporcionalidade
Autor:
ivanfx - Seg Out 17, 2011 10:24
que tal descontar 1 dia do seu resultado, pois 1900 não é bissexto, ai seria 44241 e quando fizer a divisão o resto será 1
como etá pegando base 1/01/2011, se reparar bem 01/01/2011 sempre cai no mesmo dia que 15/01/2011, sendo assim se 01/01/2011 caiu em um sábado volte 1 dia para trás, ou seja, você está no sábado e voltando 1 dia voltará para sexta.então 15/11/1889 cairá em uma sexta
Assunto:
Proporcionalidade
Autor:
Kiwamen2903 - Seg Out 17, 2011 19:43
Boa noite, sou novo por aqui, espero poder aprender e ajudar quando possível! A minha resposta ficou assim:
De 1889 até 2001 temos 29 anos bissextos a começar por 1892 (primeiro múltiplo de 4 após 1889) e terminar por 2008 (último múltiplo de 4 antes de 2011). Vale lembrar que o ano 1900 não é bissexto, uma vez que é múltiplo de 100 mas não é múltiplo de 400.
De um ano normal para outro, se considerarmos a mesma data, eles caem em dias consecutivos da semana. Por exemplo 01/01/2011 – sábado, e 01/01/2010 – sexta.
De um ano bissexto para outro, se considerarmos a mesma data, um cai dois dias da semana depois do outro. Por exemplo 01/01/2008 (ano bissexto) – Terça – feira, e 01/01/09 – Quinta-feira.
Sendo assim, se contarmos um dia da semana de diferença para cada um dos 01/01 dos 122 anos que separam 1889 e 2011 mais os 29 dias a mais referentes aos anos bissextos entre 1889 e 2011, concluímos que são 151 dias da semana de diferença, o que na realidade nos trás: 151:7= 21x7+4, isto é, são 4 dias da semana de diferença. Logo, como 15/11/2011 cairá em uma terça-feira, 15/11/1889 caiu em uma sexta-feira.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.