• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Inequação com Logaritmos

Inequação com Logaritmos

Mensagempor Questioner » Dom Mai 16, 2010 17:41

Olá,

Vejam o seguinte problema:

Seja n um número natural. Se {3}^{n} < {2}^{100} < {3}^{(n+1)}, então quanto vale n?
Use \log_{3}{2}= 0,631

Fiz uma mudança de base e achei a relação:
\frac{\log_{10}{2} }{\log_{10}{3} } = 0,631

Dividi toda a desigualdade por {2}^{100}. Substituí com a relação que achei acima, mas cheguei apenas a uma relação lógica de que n < n + 1 ou - 63,1 < - 62,1.

Como chegar em n?
Questioner
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Abr 20, 2010 22:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Inequação com Logaritmos

Mensagempor Douglasm » Dom Mai 16, 2010 18:29

Olá Questioner. Façamos por partes:

1ª condição:

2^{100} > 3^n \: \therefore \: log_32^{100} > log_33^n \: \therefore \: 100 . (0,631) > n \: \therefore \: n < 63,1

2ª condição:

2^{100} < 3^{n+1} \: \therefore \: log_32^{100} < log_33^{n+1} \: \therefore \: 100 . (0,631) < n + 1 \: \therefore \: n > 62,1

Unindo ambas as condições:

62,1 < n < 63,1

Até a próxima.
Avatar do usuário
Douglasm
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 270
Registrado em: Seg Fev 15, 2010 10:02
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.