• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função

Função

Mensagempor JailsonJr » Sex Mai 14, 2010 07:10

Se f(x)=\sqrt{2x+3} , então [f( \sqrt{2} ) - f( - \sqrt{2} )]^2 é igual a:

Resp.: 4
;)
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: Função

Mensagempor vyhonda » Sex Mai 14, 2010 11:12

Sabendo que f(x)=\sqrt[]{2x + 3}, basta substituir \sqrt[]{2} em x, assim:

f(\sqrt[]{2}) = \sqrt[]{2\sqrt[]{ 2} + 3} => I
f(-\sqrt[]{2}) = \sqrt[]{(2 . - \sqrt[]{ 2}) + 3} => II

Substituindo Equação I e II na expressão { [ f(\sqrt[]{2}) - f(-\sqrt[]{2})  ] }^{2}

{[ \sqrt[]{2\sqrt[]{2}+3} - \sqrt[]{(2. - \sqrt[]{2})+3} ]}^{2}, temos o Quadrado da Diferença

Aplicando fatoração::

2\sqrt[]{2}+3 -2[\sqrt[]{2\sqrt[]{2}+3}.\sqrt[]{-2\sqrt[]{2}+3}] + (-2\sqrt[]{2} + 3)

2\sqrt[]{2} -2\sqrt[]{2} +3+ 3  -2[\sqrt[]{2\sqrt[]{2}+3}.\sqrt[]{-2\sqrt[]{2}+3}]

6  -2[-4.2 + 6\sqrt[]{2} - 6\sqrt[]{2} + 9]

6  -2[-8 + 9]

6 - 2[1]

Portanto Resposta = 4.

Quaquer dúvida na conta, é só perguntar

Bons estudos!
vyhonda
Usuário Ativo
Usuário Ativo
 
Mensagens: 24
Registrado em: Dom Jan 17, 2010 20:03
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Materiais - Unesp
Andamento: cursando

Re: Função

Mensagempor JailsonJr » Sex Mai 14, 2010 12:00

Obrigado, entendi perfeitamente! :-D
JailsonJr
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mai 14, 2010 06:51
Formação Escolar: ENSINO MÉDIO
Andamento: formado


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.