• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor Saruman » Sex Abr 23, 2010 18:34

Boas noites,

Alguém me sabe explicar porque é que o \lim_{n\rightarrow+\infty} sin({n}^{2}) é indeterminado?

Desde já agraceço qualquer resposta,

Cumps
Saruman
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 23, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando

Re: Limites

Mensagempor Molina » Sex Abr 23, 2010 19:51

Boa tarde.

Acho que bastaria analisar que o valor de sen(x) ficará variando de -1 a 1 quando x cresce. E especialmente nesta função, quando ela tende a mais infinito ela oscila mais intensamente ainda. Fiz uma imagem pra ficar mais claro...

limite.JPG

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Limites

Mensagempor Saruman » Sex Abr 23, 2010 20:00

Certissimo!

Agradecido :)
Saruman
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Sex Abr 23, 2010 18:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: Estudante
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?