• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Como verifico esta afirmação? (integral)

Como verifico esta afirmação? (integral)

Mensagempor rafaelmtmtc » Dom Abr 18, 2010 19:41

\int_{}^{} \frac{1}{1+{x}^{2}} dx = arc tg x + K


grato pela atenção
rafaelmtmtc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 18, 2009 18:08
Formação Escolar: GRADUAÇÃO
Área/Curso: lic/bac matematica
Andamento: cursando

Re: Como verifico esta afirmação? (integral)

Mensagempor Elcioschin » Seg Abr 19, 2010 14:15

Lembre-se que:

d(tgu) = sec²u*du
sec²u = 1 + tg²u

Fazendo x = tgu no seu problema teremos:

a) 1/(1 + x²) = 1/(1 + tg²u) = 1/sec²u

b) dx = d(tgu) ----> dx = sec²u*du

c)u = arctgx

Int[1/(1 + x²)*dx = Int[(1/sec²u)sec²udu] = Int[du] = u = arctgx + K
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado

Re: Como verifico esta afirmação? (integral)

Mensagempor rafaelmtmtc » Seg Abr 19, 2010 15:57

muito grato pela atenção Elcioschin, você não sabe o quanto me ajudou.

um abraço.
rafaelmtmtc
Novo Usuário
Novo Usuário
 
Mensagens: 9
Registrado em: Sáb Abr 18, 2009 18:08
Formação Escolar: GRADUAÇÃO
Área/Curso: lic/bac matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}