• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Grafico de limites e assintotas

Grafico de limites e assintotas

Mensagempor Bruhh » Qui Abr 15, 2010 15:43

Olá, Boa Tarde!
Tenho a seguinte função para montar o gráfico e determinar as assíntotas horizontal e vertical:


f(x)=
|x|, se -4<x\leq0
4, se 0<x<\frac{1}{4}
2, se x=\frac{1}{4}
\frac{1}{4}, se \frac{1}{4}<x\leq4


Então, como é que eu monto o gráfico dessa função??
Eu sei que para calcular a assíntota horizontal, x deve tender infinito ou infinito negativo, mas onde eu calculo isso?
Também sei que para calcular a assíntota vertical, x deve tender a um número que zere o denominador, no caso de uma fração.
Mas eu não sei nem por onde começo, como monto o gráfico ou como calculo as assíntotas.Alguém, por favor ,poderia me ajudar?
-
Obrigada desde já!
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Grafico de limites e assintotas

Mensagempor MarceloFantini » Qui Abr 15, 2010 17:47

Ainda não tentei resolver a questão mas lembre-se da definição de assíntota: é a reta que representa o valor que a função se aproxima cada vez mais, sem nunca assumir. Talvez ajude. Tente plotar o gráfico também, não parece difícil, e ter alguma dica geométrica.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Grafico de limites e assintotas

Mensagempor Bruhh » Sex Abr 16, 2010 20:19

Eu já li e reli várias vezes a função mas não consigo entender.
Como eu faço para saber onde esta a assíntota se não existem contas, só valores?Como vou calcular essas assíntotas??

Por favor, me ajuda, é muitooooooooo importante!

Obrigada
Bruhh
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Seg Mar 01, 2010 14:30
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Eng. Química
Andamento: cursando

Re: Grafico de limites e assintotas

Mensagempor Marcampucio » Sex Abr 16, 2010 21:07

Essa função é composta por vários segmentos de retas. Não tem assintotas.
A revelação não acontece ao encontrar o sábio no alto da montanha. A revelação vem com a subida da montanha.
Marcampucio
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 180
Registrado em: Ter Mar 10, 2009 17:48
Localização: São Paulo
Formação Escolar: GRADUAÇÃO
Área/Curso: geologia
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59