• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Simplificação!

Simplificação!

Mensagempor dayamtdf » Qui Abr 08, 2010 18:06

Opa galera blz?
estou com um problema para simplificar o seguinte exercicio. Já tentei algumas vezes mais não consegui =/
gostaria que me ajudassem, ficarei muito grato.
Imagem
Abraços.
dayamtdf
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 08, 2010 18:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias da Computação
Andamento: cursando

Re: Simplificação!

Mensagempor Cleyson007 » Qui Abr 08, 2010 18:44

Boa tarde dayamtdf!

Seja bem vindo(a) ao ajuda Matemática!

Vou dar a dica e você tenta fazer, :y:

Tire o mínimo múltiplo comum da primeira fração:

\frac{(2x)(x-4)+13x-3}{x-4}

Tirando o mínimo múltiplo comum da segunda fração:

\frac{(2x)(x-4)+x+3}{x-4}

No problema tem-se uma divisão de fração. Para resolvê-la, conserve a primeira fração e multiplique pelo inverso da segunda.

Comente qualquer dúvida!

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Simplificação!

Mensagempor dayamtdf » Qui Abr 08, 2010 18:53

hum...
tentei aqui e não consegui fazer, acho q erre no mmc.
você poderia me mostrar como era?

eu tinha tentado de outra maneira, cortei o "x-4" das duas frações, e depois somei o que restou...
no caso o resultado final foi
12x
5x
mas acho q está errado...
Obrigado pela Ajuda!
dayamtdf
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 08, 2010 18:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias da Computação
Andamento: cursando

Re: Simplificação!

Mensagempor Cleyson007 » Qui Abr 08, 2010 21:55

Segue resolução, mas é importante que você comente qualquer dúvida, :y:

Tirando o mínimo múltiplo comum da primeira fração:

\frac{(2x)(x-4)+13x-3}{x-4}

Tire o mínimo múltiplo comum da segunda fração:

\frac{(2x)(x-4)+x+3}{x-4}

Multiplicando a primeira pelo inverso da segunda, temos:

\left(\frac{(2x)(x-4)+13x-3}{x-4} \right)\left(\frac{x-4}{(2x)(x-4)+x+3} \right)

Cortando o (x-4) que é comum tanto no numerador como no denominador, temos:

\frac{(2x)(x-4)+13x-3}{(2x)(x-4)+x+3}

Resolvendo os parênteses:

\frac{{2x}^{2}-8x+13x-3}{{2x}^{2}-8x+x+3}

Somando os termos semelhantes:

\frac{{2x}^{2}+5x-3}{{2x}^{2}-7x+3}

Temos duas equações do 2° grau, precisamos encontrar suas raízes reais para seguir com os cálculos:

Da primeira equação:

{x}_{1}=\frac{1}{2}

{x}_{2}=-3

Da segunda equação:

{x}_{1}=3

{x}_{2}=\frac{1}{2}

Logo, temos a seguinte fração:

\frac{\left(x-\frac{1}{2})(x+3) \right}{(x-3)(x-\frac{1}{2})}

Cortando os termos semelhantes entre o numerador e o denominador, temos:

\frac{x+3}{x-3}

Até mais.
A Matemática está difícil? Não complica! Mande para cá: descomplicamat@hotmail.com

Imagem
Avatar do usuário
Cleyson007
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1228
Registrado em: Qua Abr 30, 2008 00:08
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática UFJF
Andamento: formado

Re: Simplificação!

Mensagempor dayamtdf » Qui Abr 08, 2010 23:28

Opa cara valeu!
nossa, me ajudou bastante!
não teria conseguido fazer sozinho.
Muito Obrigado Pela sua ajuda!
Abraços.
dayamtdf
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qui Abr 08, 2010 18:02
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciencias da Computação
Andamento: cursando


Voltar para Sistemas de Equações

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.