• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Problema..

Problema..

Mensagempor gabimucedola » Dom Abr 04, 2010 23:33

Ola, segue o penultimo problema, eu tnho uma lista enorme para nota, esses dois ultimos eu nao consegui fazer, se puder me ajudar, obrigado!


13. Em uma fábrica temos a capacidade produtiva máxima estimada em 7.000 (sete mil) unidades. A fábrica tem suas fórmulas de cálculo de custo total e receita total expressas por equações do 2º grau. Seu custo fixo igual a R$ 10.000 (dez mil reais). Quando a fábrica nada produz, sua receita é, naturalmente, ZERO e seu custo total igual ao custo fixo. Quando a fábrica produz 1.000 unidades, seu custo total é igual a R$ 33.000 (trinta e três mil reais) e sua receita total igual a R$ 26.000 (vinte e seis mil reais). Quando a fábrica produz 6.000 unidades, seu custo total é igual a R$ 58.000 (cinqüenta e oito mil reais) e sua receita total igual a R$ 126.000 (cento e vinte e seis mil reais). Pede-se:
a. A equação do lucro.
b. O(s) ponto(s) de equilíbrio.
c. O lucro máximo obtido em reais e o volume de produção que o gera.
gabimucedola
Usuário Ativo
Usuário Ativo
 
Mensagens: 23
Registrado em: Qui Mar 25, 2010 21:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Marketing
Andamento: cursando

Voltar para Matemática Financeira

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}