• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Equação

Equação

Mensagempor estudandoMat » Dom Abr 04, 2010 16:28

As raizes da equação
x² - (2.tg.a)x - 1 = 0

Resposta: tg.a +- sec.a

Sou horrivel em trigonometria, estudando sem professor, pior ainda. Se alguem souber resolver, agradeço. Aos poucos vou pegando o jeito. Obrigado
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Equação

Mensagempor davi_11 » Dom Abr 04, 2010 18:10

x^2 - (2tga)x - 1 = 0

\Delta = 4tg^2a + 4

x = \dfrac {2tga \pm \sqrt {4tg^2a + 4}} {2}

x = \dfrac {2tga \pm 2\sqrt {tg^2a + 1}} {2}

x = tga \pm \sqrt {tg^2a + 1}

Relação entre secante e tangente:

sec^2a = 1 + tg^2a

Portanto:

x = tga \pm seca
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: Equação

Mensagempor estudandoMat » Dom Abr 04, 2010 18:42

Valeu , Davi. Só uma duvida:

\sqrt[]{4{tg}^{2}\alpha + 4}

virou

2\sqrt[]{{tg}^{2}\alpha + 1}

Como o 4 da soma foi transformado em 1? o da tg virou 2² e saiu da raiz certo? mas e o +4?

Obrigado
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Equação

Mensagempor davi_11 » Dom Abr 04, 2010 19:50

Coloca o 4 em evidencia:
\sqrt {4\times (tg^2a + 1)}

XD
"Se é proibido pisar na grama, o jeito é deitar e rolar..."
davi_11
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 47
Registrado em: Sex Abr 02, 2010 22:47
Localização: Leme - SP
Formação Escolar: ENSINO MÉDIO
Área/Curso: Curso técnico em eletrotécnica
Andamento: formado

Re: Equação

Mensagempor estudandoMat » Dom Abr 04, 2010 20:16

lol, valeu
estudandoMat
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 52
Registrado em: Sex Abr 02, 2010 00:29
Formação Escolar: GRADUAÇÃO
Andamento: cursando


Voltar para Trigonometria

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.