• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Encontrar Dominio usando logaritimo

Encontrar Dominio usando logaritimo

Mensagempor barizom » Sáb Mar 27, 2010 13:58

O enunciado pede para encontrar o dominio da função.
f(x)=\sqrt{1-log(1-x)}

A respota é: D(f)= x pertence aos reais tal que -9 maior ou igual a X e menor que 1.

Consegui achar o 1 fazendo (1-x)>0, mas o menos nove não, ate achei mas não tenho certeza se a matematica que eu usei esta certa, se alguem puder ajudar com essa parte eu agradeço.
barizom
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Mar 27, 2010 13:39
Formação Escolar: SUPLETIVO
Área/Curso: Fisica
Andamento: cursando

Re: Encontrar Dominio usando logaritimo

Mensagempor Molina » Sáb Mar 27, 2010 17:52

barizom escreveu:O enunciado pede para encontrar o dominio da função.
f(x)=\sqrt{1-log(1-x)}

A respota é: D(f)= x pertence aos reais tal que -9 maior ou igual a X e menor que 1.

Consegui achar o 1 fazendo (1-x)>0, mas o menos nove não, ate achei mas não tenho certeza se a matematica que eu usei esta certa, se alguem puder ajudar com essa parte eu agradeço.

Boa tarde, barizom.

Você terá que considerar as duas condições para essa função existir.

Lembramos que:
    \sqrt{x} \Rightarrow x \in [0,\infty)
    log(x) \Rightarrow x \in (0,\infty)

Com isso, log(1-x) \Rightarrow x \in (-\infty,1) (intervalo 1)

E temos que 1-log(1-x) \geq 0 \Rightarrow 1 \geq log(1-x) \Rightarrow x \in [-9,1) (intervalo 2)

Fazendo a intersecção dos intervalos 1 e 2, temos que x \in [-9,1)

:y:
Diego Molina | CV | FB | .COM
Equipe AjudaMatemática.com


"Existem 10 tipos de pessoas: as que conhecem o sistema binário e as que não conhecem."
Avatar do usuário
Molina
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 1551
Registrado em: Dom Jun 01, 2008 14:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - UFSC
Andamento: formado

Re: Encontrar Dominio usando logaritimo

Mensagempor barizom » Sáb Mar 27, 2010 20:48

No caso eu tinha feito desse jeito, mas achei estranho ignorar a raiz e o f(x).
Foi essa logica que eu não vi, como eu podia ignorar a raiz e o f(x) para achar o dominio, na verdade ainda não vi.
Tambem nao entendi o porque do maior ou igual n intervalo 2.
barizom
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Mar 27, 2010 13:39
Formação Escolar: SUPLETIVO
Área/Curso: Fisica
Andamento: cursando


Voltar para Funções

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}