• Anúncio Global
    Respostas
    Exibições
    Última mensagem

exercicio resolvido

exercicio resolvido

Mensagempor adauto martins » Seg Jul 26, 2021 10:26

(ITA-1961)determinar a e b de modo que
6x^4-ax^3+62x^2-35x+b-a=0
seja reciproca de 1a. classe e,em seguida,achar as raizes da equaçao,para esses valores de a e b.
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: exercicio resolvido

Mensagempor adauto martins » Seg Jul 26, 2021 10:53

soluçao

equaçao reciproca de 1a.classe(1a.especie) tem os coeficiente equidistantes iguais.logo

a=35...b-a=6\Rightarrow b=6+a=41...

logo a equaçao sera

6x^4-35x^3+62x^2-35x+6=0

a mesma do exercicio (ITA-1957) que resolvemos.aqui utilizarei outra tecnica para soluçao

6x^4-35x^3+62x^2-35x+6=0\Rightarrow 6x^4-6-35x^3-35x+62=0

x^2.(6(x^2+(1/x)^2)-35(x+(1/x))+62=0,x\neq0(pq?)
(6(x^2+(1/x)^2)-35(x+(1/x))+62=0

façamos
y=x+(1/x)(1)\Rightarrow y^2=(x+(1/x))^2=x^2+2.x.(1/x)+(1/x)^2\Rightarrow

y^2=x^2+(1/x)^2+2\Rightarrow x^2+(1/x)^2=y^2-2

logo,teremos

6(y^2-2)-35y+62=6y^2-35y+(62-12)=6y^2-35y+50=0...

teremos

y=(35(+/-)\sqrt[]{(35^2-(4.6.50))})/12

y=(35(+/-)5)/12...

y=4/3...y=5/6...

usando (1) y=x+(1/x) acharemos as raizes do polinomio(termine-o,como exercicio)...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Polinômios

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.