por Zubumafu67 » Ter Nov 17, 2020 11:38
[Enunciado]: Uma transformação linear T : V → V é dita idenpotente se = T , onde = T ◦ T. Seja T : V → V uma aplicação linear idenpotente.
(a) Mostre que V = N(T) ⊕ Im(T).
(b) Escreva a matriz da transformação T em termos de uma base B = (v1, . . . , vp, vp+1, . . . , vn) onde (v1, . . . , vp) é uma base de Im(T) e (vp+1, . . . , vn) é uma base de N(T).
(c) Verifique que a aplicação do exercício anterior é idenpotente.
(d) Mostre que a transformação linear:
F = I − T : V → V, F(v) = v − T(v)
também é idenpotente.
(e) Mostre que N(F) = Im(T) e Im(F) = N(T).
Preciso de ajuda, por favor!
-
Zubumafu67
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Qua Nov 04, 2020 11:21
- Formação Escolar: GRADUAÇÃO
- Área/Curso: ciencias da computação
- Andamento: cursando
Voltar para Álgebra Linear
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Algebra Linear] - Composição de transformação Linear
por aligames321 » Ter Dez 04, 2012 23:53
- 1 Respostas
- 10387 Exibições
- Última mensagem por young_jedi

Qua Dez 05, 2012 12:45
Álgebra Linear
-
- Álgebra Linear -Transformação linear- Isomorfismo
por anapaulasql » Ter Jan 27, 2015 22:08
- 1 Respostas
- 11403 Exibições
- Última mensagem por adauto martins

Ter Mar 29, 2016 13:15
Álgebra Linear
-
- [Álgebra Linear] Transformação linear
por Debby » Dom Mai 27, 2012 12:17
- 2 Respostas
- 8988 Exibições
- Última mensagem por Debby

Dom Mai 27, 2012 20:27
Álgebra Linear
-
- [Algebra Linear]-transformação linear
por Angel31 » Dom Out 28, 2012 10:10
- 1 Respostas
- 2807 Exibições
- Última mensagem por young_jedi

Dom Out 28, 2012 11:03
Álgebra Linear
-
- [Álgebra Linear ] Determine Uma matriz de transformação I de
por alienante » Seg Set 15, 2014 20:25
- 0 Respostas
- 2682 Exibições
- Última mensagem por alienante

Seg Set 15, 2014 20:25
Álgebra Linear
Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.