soluçao:
estudar a variaçao de uma funçao e procurar os maximos e minimos desta.verificar pontos de inflexao e etc...
essa primeira parte faremos;a segunda é achar suas raizes e em funçao dos maximos,minimos,inflexao traçar o grafico,essa deixo para os interessados,como exercicio...
1)
para derivar a funçao y,usaremos a "derivada do quociente",pois é a divisao de dois polinomios:


para achar os pontos de maximos,minimos,faremos


refaçam ai essas contas e algebrismos simples,pois eu erro demasiadamente esses calculos.
vamos encontrar as raizes da equaçao (*) e verificar se sao maximos ou minimos...

as raizes serao:
![{x}_{1}=(-(-3)+\sqrt[]{73})/(2.4)=(9+\sqrt[]{73})/8
{x}_{2}=(9-\sqrt[]{73})/8 {x}_{1}=(-(-3)+\sqrt[]{73})/(2.4)=(9+\sqrt[]{73})/8
{x}_{2}=(9-\sqrt[]{73})/8](/latexrender/pictures/ec4a8eb1d53009d4dd6f05970a20ab42.png)
calcular

![y''((9+\sqrt[]{73})/8)=...
y''((9-\sqrt[]{73})/8)=... y''((9+\sqrt[]{73})/8)=...
y''((9-\sqrt[]{73})/8)=...](/latexrender/pictures/c94d484abb868690d141fdf20cc0fb35.png)
e verificar em qual a derivada segunda é positiva(minimo) e qual a derivada segunda é negativa(maximo)...
para se saber se ha ponto inflexao,façamos
calcular a

e etc...entao é isso,façam ai que é compensador como exercicio e preparaçao para concursos(nivel superior),materia de calculo 1(cursos de engenharias) e vestibulares que cobram tal assuntos,como esse da ENE...ITA,IME,EsTE...