por Bruhh » Seg Mar 22, 2010 16:47
Opaa, olha eu aqui de novo, rsrsrs!
Bom dessa vez estou com duas dúvuidas...
A primeira é em relação a este problema:
*Numa certa cultura existem 1000 bactérias em determinado instante. Após 10 minutos, existem 4000.Quantas bactérias existirão em 1 hora, sabendo que elas aumentam através da fórmula P=Po .

, em que P é o nº de bactérias, t é o tempo em horas e k é a taxa de crescimento?
- - -Eu não sei como calcular a taxa de crescimento, alguém ajuda??O restante do problema eu sei como resolver mas não sei como descubro a taxa.
--------------------------------:D-------------------------:)------------------;)----------------:P--------------XD---------------------------------
*A mortalidade infantil do Senegal está sendo reduzida a uma taxa de 10% ao ano.Quanto tempo levará para que a mortalidade infantil seja reduzida a 50%, sabendo que essa situação pode ser modelada pela função exponencial y=yo.
- - -E nessa questão eu não sei como achar um número em anos, se o problema se me fornece as porcentagens de redução
Obrigadaa mais uma vez
;**
-
Bruhh
- Usuário Dedicado

-
- Mensagens: 47
- Registrado em: Seg Mar 01, 2010 14:30
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Bacharelado em Eng. Química
- Andamento: cursando
por Elcioschin » Seg Mar 22, 2010 19:10
P = Po*e^(k*t)
Para t = 0 -----> P = 1 000 ----> 1 000 = Po*e^(k*0) ----> 1 000 = Po*e^0 ----> 1 000 = Po*1 ----> Po = 1 000
Para t = 10 min = 1/6 h ----> P = 4 000 ----> 4 000 = 1 000*e^(k/6) ----> e^(k/6) = 4 ---> e^k = 4^6 ----> e^k = 1 296
Para k = 1 k ------> P = 1 000*e^(k*1) ----> P = 1296*(e^k) -----> P= 1 000*1 296 -----> P = 1 296 000
Faça vc agora o outro, lembrando que b = 0,9
-
Elcioschin
- Colaborador Voluntário

-
- Mensagens: 624
- Registrado em: Sáb Ago 01, 2009 10:49
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: formado
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [equação exponencial] aplicação de logaritmos
por Zeh Edu » Sex Nov 09, 2012 05:49
- 2 Respostas
- 1748 Exibições
- Última mensagem por Zeh Edu

Sex Nov 09, 2012 08:54
Logaritmos
-
- [Função exponencial] Exercício sobre função exponencial
por fff » Ter Jan 07, 2014 17:51
- 3 Respostas
- 3880 Exibições
- Última mensagem por fff

Qua Jan 08, 2014 06:47
Funções
-
- [Aplicação constante] Forma genérica da função
por CBRJ » Ter Abr 09, 2013 23:51
- 4 Respostas
- 3254 Exibições
- Última mensagem por CBRJ

Qua Abr 10, 2013 01:36
Matemática Financeira
-
- [Função diferenciável] Aplicação de planos tangentes
por willlol01 » Sex Mai 06, 2016 22:28
- 1 Respostas
- 2525 Exibições
- Última mensagem por adauto martins

Sáb Mai 14, 2016 15:43
Cálculo: Limites, Derivadas e Integrais
-
- [Desigualdade] entre função exponencial e função potência
por VitorFN » Sex Mai 26, 2017 15:18
- 1 Respostas
- 5423 Exibições
- Última mensagem por adauto martins

Sex Jul 07, 2017 12:17
Álgebra Elementar
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.