• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Otimização]Maior área de um retângulo

[Otimização]Maior área de um retângulo

Mensagempor frank1 » Qua Mai 23, 2012 03:29

Fala pessoal blz?

Estou em dúvida na seguinte questão de otimização: "Prove que entre todos os retângulos com um dado perímetro P, o quadrado é o que possui maior área"

Até onde cheguei:
2x+2y=P e x.y=A, daí isolo x na primeira equação fica: x=(P-2y)/2, e levo para A, resultando em A=((P-2y)/2).y, e aí não sei mais...

E agora?

abraços!!!
frank1
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 23, 2012 03:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: cursando

Re: [Otimização]Maior área de um retângulo

Mensagempor LuizAquino » Qua Mai 23, 2012 11:35

frank1 escreveu:Estou em dúvida na seguinte questão de otimização: "Prove que entre todos os retângulos com um dado perímetro P, o quadrado é o que possui maior área"

Até onde cheguei:
2x+2y=P e x.y=A, daí isolo x na primeira equação fica: x=(P-2y)/2, e levo para A, resultando em A=((P-2y)/2).y, e aí não sei mais...

E agora?


Agora basta aplicar o Teste da Primeira Derivada ou o Teste da Segunda Derivada. Se você não souber como proceder, então eu recomendo que você assista a videoaula "21. Cálculo I - Teste da Primeira e da Segunda Derivada". Ela está disponível em meu canal no YouTube:

http://www.youtube.com/LCMAquino

Se você não conseguir avançar mesmo após assistir a videoaula, então poste aqui até onde você conseguiu fazer.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Otimização]Maior área de um retângulo

Mensagempor frank1 » Qua Mai 23, 2012 20:15

Opa Luiz, de antemão, já agradeço a ajuda :)

Então, derivando a função A=\frac{-2y^2+Py}{2} chego à seguinte expressão: \frac{-4y+P}{2}, dái então eu quero achar o ponto crítico, que resulta em y=\frac{P}{4}, e agora fico meio confuso...

Chegando a esse ponto crítico, como irei dizer se ele é um ponto de max ou um ponto de min? e se for de max/min como devo proceder?

abraços!!
frank1
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 23, 2012 03:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: cursando

Re: [Otimização]Maior área de um retângulo

Mensagempor LuizAquino » Qui Mai 24, 2012 01:07

frank1 escreveu:Então, derivando a função A=\frac{-2y^2+Py}{2} chego à seguinte expressão: \frac{-4y+P}{2}, dái então eu quero achar o ponto crítico, que resulta em y=\frac{P}{4}


Ok.

frank1 escreveu:Chegando a esse ponto crítico, como irei dizer se ele é um ponto de max ou um ponto de min?


Isso é explicado na videoaula que indiquei anteriormente.

frank1 escreveu:e se for de max/min como devo proceder?


Vamos supor que você já conseguiu justificar que y = P/4 é o ponto de máximo.

Como você já sabe que x = (P - 2y)/2, substituindo y por P/4 você obtém que:

x = \frac{P-2\cdot \frac{P}{4}}{2}

x = \frac{P-\frac{P}{2}}{2}

x = \frac{\frac{2P - P}{2}}{2}

x = \frac{P}{4}

Desse modo, você pode concluir que x = y (já que ambos são iguais a P/4).

Note que isso significa que a maior área possível acontece quando o retângulo tem lados iguais. Ou seja, quando o retângulo é um quadrado.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Otimização]Maior área de um retângulo

Mensagempor frank1 » Qui Mai 24, 2012 09:15

Caramba Luiz, MUITO obrigado , entendi a questão e agora estou entendendo muito mais sobre pontos críticos e teste de segunda derivada

;)

EDIT: Luiz, uma ultima duvida: se o teste da derivada segunda, indicasse que aquele era ponto de min, como eu iria proceder?
frank1
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Qua Mai 23, 2012 03:18
Formação Escolar: GRADUAÇÃO
Área/Curso: Informática
Andamento: cursando

Re: [Otimização]Maior área de um retângulo

Mensagempor LuizAquino » Qui Mai 24, 2012 18:44

frank1 escreveu:Luiz, uma ultima duvida: se o teste da derivada segunda, indicasse que aquele era ponto de min, como eu iria proceder?


Nesse caso, o enunciado do exercício estaria inconsistente, já que não haveria uma área máxima como é solicitado, mas sim uma área mínima.

De qualquer modo, no caso desse exercício, a pessoa tem que de fato obter que a área é máxima. Caso contrário, ela errou alguma coisa no desenvolvimento.
lcmaquino.org | youtube.com/LCMAquino | facebook.com/Canal.LCMAquino | @lcmaquino | +LCMAquino

"Sem esforço, não há ganho."
Dito popular.
Avatar do usuário
LuizAquino
Colaborador Moderador - Professor
Colaborador Moderador - Professor
 
Mensagens: 2651
Registrado em: Sex Jan 21, 2011 09:11
Localização: Teófilo Otoni - MG
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Mestrado - Modelagem Computacional
Andamento: formado

Re: [Otimização]Maior área de um retângulo

Mensagempor lucasabreuo » Ter Mai 07, 2019 02:00

LuizAquino, boa noite!

Tenho um problema parecido com esse para resolver...Poderia me ajudar?

A questão é a seguinte:

Mostre que de todos os retângulos com uma dada área, aquele com o menor perímetro é um quadrado.

Nesse caso eu isolo o X da função Area do retângulo e substituo na função p do perímetro do retângulo e derivo?

Obrigado!
lucasabreuo
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 05, 2019 23:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Sistemas de Informação
Andamento: cursando

Re: [Otimização]Maior área de um retângulo

Mensagempor adauto martins » Dom Jun 02, 2019 14:00

A=x.y...y=\sqrt[]{{d}^{2}-{x}^{2}}...logo:
A(x)=x.(\sqrt[]{{{d}^{2}-{{x}^{2}}}^{}})...
A'(x)=-2x(\sqrt[]{{{d}^{2}-{{x}^{2}}}^{}})+(-2{x}^{3}/(\sqrt[]{{{d}^{2}-{{x}^{2}}}^{}})=0...
2x.(d}^{2}-{x}^{2}-{x}^{2}/(\sqrt[]{{{d}^{2}-{{x}^{2}}}^{}}))=0\Rightarrow
x=\sqrt[]{{{d}^{2}-{{x}^{2}}}^{}}=y...x=y...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 762
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Otimização]Maior área de um retângulo

Mensagempor adauto martins » Qui Jun 06, 2019 12:59

uma correçao:
A'(x)=\sqrt[]{{d}^{2}-{x}^{2}}-2{x}^{2}/(\sqrt[]{{d}^{2}-{x}^{2}})
no qual se segue o resultado acima...
A'(x)=({d}^{2}-{x}^{2}-{x}^{2})/(\sqrt[]{{d}^{2}-{x}^{2}})=0...

x=y......obrigado
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 762
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: