• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Variância - Estatística

Variância - Estatística

Mensagempor Cristina Lins » Sáb Fev 23, 2019 16:36

Seja o conjunto de valores 4, 1, 8 , 7 e n. Qual é o valor de n que minimiza a variância desses valores? Qual é, nesse caso, o valor da variância?
Cristina Lins
Novo Usuário
Novo Usuário
 
Mensagens: 8
Registrado em: Sex Nov 18, 2011 10:30
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Variância - Estatística

Mensagempor Baltuilhe » Dom Mar 31, 2019 19:14

Boa tarde!

A média é calculada por:
\overline{X}=\dfrac{\sum X}{N}, onde N é a quantidade de termos do dado conjunto de valores.

A variância é dada por:
\sigma^2=\dfrac{\sum \left(X-\overline{X}\right)^2}{N}

Veja que a variância é calculada pelo quadrado das diferenças entre cada elemento do conjunto de valores e sua respectiva média.

A média original era:
\overline{x}=\dfrac{4+1+8+7}{4}=\dfrac{20}{4}=5

Então, a variância para este conjunto de valores será a diferença entre cada termo e a média, que vale 5.
Se quisermos acrescentar um novo termo e tornar mínima a variância, acrescentemos a média, pois assim continuaremos com todos os termos somados iguais, acrescentaremos um último termo igual a zero ( que é 5-5 ao quadrado) e dividiremos por 5, ao invés de 4, pois teremos um elemento a mais.

Então, para obter o que se pede, basta adicionar sempre a média dos elementos de forma a assegurar nova variância mínima.

Valor de n que minimiza a variância: 5
Valor da variância: 6 (tente calcular)

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado

Re: Variância - Estatística

Mensagempor Baltuilhe » Dom Mar 31, 2019 19:14

Boa tarde!

A média é calculada por:
\overline{X}=\dfrac{\sum X}{N}, onde N é a quantidade de termos do dado conjunto de valores.

A variância é dada por:
\sigma^2=\dfrac{\sum \left(X-\overline{X}\right)^2}{N}

Veja que a variância é calculada pelo quadrado das diferenças entre cada elemento do conjunto de valores e sua respectiva média.

A média original era:
\overline{x}=\dfrac{4+1+8+7}{4}=\dfrac{20}{4}=5

Então, a variância para este conjunto de valores será a diferença entre cada termo e a média, que vale 5.
Se quisermos acrescentar um novo termo e tornar mínima a variância, acrescentemos a média, pois assim continuaremos com todos os termos somados iguais, acrescentaremos um último termo igual a zero ( que é 5-5 ao quadrado) e dividiremos por 5, ao invés de 4, pois teremos um elemento a mais.

Então, para obter o que se pede, basta adicionar sempre a média dos elementos de forma a assegurar nova variância mínima.

Valor de n que minimiza a variância: 5
Valor da variância: 6 (tente calcular)

Espero ter ajudado!
Baltuilhe
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 58
Registrado em: Dom Mar 24, 2013 21:16
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: formado


Voltar para Estatística

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)