por thejotta » Qua Mai 02, 2018 10:51
Quais são os pontos da circunferência

em que o gradiente de

tem módulo máximo?
a)(0,-1) e (0,1)
b)(-1,0) e (1,0)
c)(-?2/2 , - ?2/2) e (?2/2, ?2/2)
d)(1,0) e (0,1)
e)(-1,0) e (0,-1)
Fiz o gradiente de F(x,y)=(x,2y), mas não sei como continuar para chegar nesse resultado.
O gabarito é letra A.
Se alguém puder me ajudar ficarei muito grato.
-
thejotta
- Usuário Ativo

-
- Mensagens: 20
- Registrado em: Seg Out 29, 2012 12:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por adauto martins » Sáb Mai 05, 2018 15:19
gradiente da circunferência (1):

tem sempre o mesmo valor(pq?)...
gradiente de f(x):

...

são ortogonais(pq?),logo:


...a solução da intersecao das circunf.teremos:


-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Gradiente
por Danilo » Seg Mai 19, 2014 20:51
- 1 Respostas
- 1318 Exibições
- Última mensagem por Russman

Seg Mai 19, 2014 22:11
Cálculo: Limites, Derivadas e Integrais
-
- [Gradiente e derivada direcional]
por dulifs » Seg Out 31, 2011 15:22
- 2 Respostas
- 4786 Exibições
- Última mensagem por dulifs

Seg Out 31, 2011 18:14
Cálculo: Limites, Derivadas e Integrais
-
- Gradiente e taxa de variação
por vinik1 » Qua Mai 09, 2012 17:25
- 4 Respostas
- 10364 Exibições
- Última mensagem por vinik1

Sáb Mai 12, 2012 12:35
Cálculo: Limites, Derivadas e Integrais
-
- Duvida vetor gradiente
por VenomForm » Qui Nov 14, 2013 11:21
- 2 Respostas
- 5229 Exibições
- Última mensagem por adauto martins

Qui Set 24, 2015 15:38
Cálculo: Limites, Derivadas e Integrais
-
- Divergente, gradiente e rotacional.
por Crisaluno » Qui Set 03, 2015 04:37
- 2 Respostas
- 2227 Exibições
- Última mensagem por Crisaluno

Dom Set 06, 2015 02:08
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.