Estou com a seguinte questão:
Você realizou uma aplicação em 13 LFs pelo valor de R$ 2.390.000,00 em 31/01/2007, com vencimento em 31/01/2011.
Assuma um CDI de 2,01% a.m.over em fev., 0,86% a.m.over em mar., 0,79% a.m.over em abr. Levando-se em consideração que o cupom de cada LF é de 108% do CDI, qual foi a sua rentabilidade no trimestre, levando em conta 19, 22 e 20 dias úteis em cada mês?
Eu não faço a mínima ideia de como se resolve. Eu comecei com as taxas over.
Primeiro (na HP):
![\frac{19}{252} \rightarrow (STO1) \rightarrow [\frac{2,01}{100}+1] \rightarrow(RCL1) \rightarrow {y}^{x} \rightarrow (1 -) \rightarrow (100)multiplica \frac{19}{252} \rightarrow (STO1) \rightarrow [\frac{2,01}{100}+1] \rightarrow(RCL1) \rightarrow {y}^{x} \rightarrow (1 -) \rightarrow (100)multiplica](/latexrender/pictures/5cb936f975e83276f4fff0ad0ce18af2.png)
Fiz isso para as outras duas. Primeiro, não faço ideia se o raciocínio é esse. E depois disso, não sei o que fazer. Alguém pode me dar uma "luz"?

![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.