• Anúncio Global
    Respostas
    Exibições
    Última mensagem

cálculo de porcentagem

cálculo de porcentagem

Mensagempor ezidia51 » Dom Mar 25, 2018 16:27

Alguém poderia conferir se este cálculo de procentagem está correto?

Se o raio da base de um cilindro sofrer uma redução de 10% e sua
altura for aumentada em 20% qual será a alteração do volume em % ?
Para calcularmos a porcentagem usamos a fórmula do volume do cilindro
( V= π.r2..H ) sendo r =1 e H=1
Redução de 10% do raio =0,9
Aumento de 20% na altura =1,2
volume novo .
volume original
O volume novo é V= π.0, 9.r(original)2 .h(1.2)
O volume original é V= π.r(original)2 .h(original)
V= = =0,97133 ou 97,13%
π.(1)2.1
π.(0,9)2..1.2
3,14.12.1
3,14.(0,9)2..1.2
Deste modo ,o novo volume é 97,13% = 100%-97,13=2,87%
O cilindro teve o volume reduzido em 2,87% e esta foi a alteração 2,87%
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: cálculo de porcentagem

Mensagempor Gebe » Dom Mar 25, 2018 18:23

Nao consegui entender o que tu fez nesta parte:
ezidia51 escreveu:...
V= = =0,97133 ou 97,13%
π.(1)2.1
π.(0,9)2..1.2
3,14.12.1
3,14.(0,9)2..1.2


O desenvolvimento anterior a ela estava certo sim. A partir dali temos:

O volume novo:
V=\pi*\left( 0.9r(original) \right)^2*1.2h(original)\\
V=\pi*(0.9^2 *1.2)*\left(r(original) \right)^2 *h(original)\\
V=0.972*\pi*\left(r(original) \right)^2 *h(original)

O volume original:
V=\pi*\left(r(original) \right)^2 *h(original)

A relação entre os dois volumes (original e novo) nos da a parcela de aumento (ou redução do volume.
\frac{{V}_{novo}}{V_{original}}=\frac{0.972*\pi*\left(r(original) \right)^2 *h(original)}{\pi*\left(r(original) \right)^2 *h(original)}=\frac{0.972}{1}=0.972

Isso nos diz que o volume novo é 97.2% do valor original, logo houve uma redução volumetrica de (100%-97.2%), ou seja, 2.8%
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: cálculo de porcentagem

Mensagempor ezidia51 » Dom Mar 25, 2018 19:21

ok muito obrigada :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}