• Anúncio Global
    Respostas
    Exibições
    Última mensagem

simplificação de raízes

simplificação de raízes

Mensagempor ezidia51 » Seg Mar 12, 2018 23:39

1) LaTeX: \frac{\sqrt{20}}{\sqrt{810}}
\sqrt[]{}\frac{20}{810} então fatorei o 20 e o 810 20=2.5 e o 810 =2.3^4.5 e aí me perdi.Não sei se resolvo o que está dentro da raiz ou se elimino os numeros 2 e 5.




2)] LaTeX: x\text{ }\sqrt[3]{(x^2 )}+5x^{\frac{5}{3}}-6\sqrt[3]{x^5= x .x.{x}^{\frac{2}{3}}+5\sqrt[3]{x^5}-6\sqrt[3]{x^5} e aí não consegui mais desenvolver o raciocinio.Acho que tem algo errado.
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado

Re: simplificação de raízes

Mensagempor Gebe » Ter Mar 13, 2018 01:26

1)
\sqrt[2]{\frac{20}{810}} = \sqrt[2]{\frac{2*2*5}{2*3*3*3*3*5}}=\sqrt[2]{\frac{2}{3^2*3^2}}=\frac{1}{3*3}\sqrt[2]{2}=\frac{1}{9}\sqrt[2]{2}

Perceba que os numeros com expoentes multiplos do indice da raiz podem ser simplificados, ou seja, podemos "retirar" estes termos da raiz.
Fica facil de ver se colocarmos os termos com expoentes fracionarios, como é feito na questao 2.

2)
Essa questao, como mencionado antes, fica simples se colocarmos os termos com expoente fracionado. Perceba tambem que utilizamos uma propriedade que diz: x^y * x^z = {x}^{y+z}.


x\text{ }\sqrt[3]{(x^2 )}+5x^{\frac{5}{3}}-6\sqrt[3]{x^5}=x*x^\frac{2}{3}+5x^{\frac{5}{3}}-6x^\frac{5}{3}=x^\frac{3}{3}*x^\frac{2}{3}+5x^{\frac{5}{3}}-6x^\frac{5}{3}=

x^\frac{2+3}{3}+5x^{\frac{5}{3}}-6x^\frac{5}{3}=x^\frac{5}{3}+5x^{\frac{5}{3}}-6x^\frac{5}{3}=x^\frac{5}{3} * ( 1+5-6)=x^\frac{5}{3} * 0 = 0
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 158
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando

Re: simplificação de raízes

Mensagempor ezidia51 » Ter Mar 13, 2018 12:21

Um super muito obrigado pela ajuda!!!Vou estudar mais estas simplificações !!!Muito muito obrigado!11 :y: :y: :y: :y: :y: :y: :y:
ezidia51
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 86
Registrado em: Seg Mar 12, 2018 20:57
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: tecnico em enfermagem
Andamento: formado


Voltar para Aritmética

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}