• Anúncio Global
    Respostas
    Exibições
    Última mensagem

PROBABILIDADE SIMPLES

PROBABILIDADE SIMPLES

Mensagempor gabrielpacito » Seg Mar 05, 2018 20:16

Escolhido ao acaso um elemento do conjunto dos divisores positivos de 60, a probabilidade de
que ele seja primo é
a) 1/2.
b) 1/3.
c) 1/4.
d) 1/5.
e) 1/6.
gabrielpacito
Usuário Ativo
Usuário Ativo
 
Mensagens: 17
Registrado em: Qua Fev 07, 2018 15:29
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: PROBABILIDADE SIMPLES

Mensagempor Gebe » Seg Mar 05, 2018 21:32

O espaço amostral nesta situação é o conjunto dos divisores do numero 60, sendo eles: 1 , 2 , 3 , 4 , 5 , 6 , 10 , 12 , 15 , 20 , 30 , 60 (12 elementos)
Neste conjunto nos interessa os numeros que são primos, ou seja, queremos a intersecção entre o conjunto dos divisores de 60 e o conjunto dos numeros primos, sendo eles: 2 , 3 e 5 (3 elementos).

Para calcular a probabilidade fazemos (Eventos de interesse) / (Espaço amostral) ,ou seja, (Primos e divisores de 60) / (divisores de 60)
Calculando temos: 3/12 = 1/4 (letra c)
Gebe
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 153
Registrado em: Qua Jun 03, 2015 22:47
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia eletrica
Andamento: cursando


Voltar para Probabilidade

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.


cron