• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função Logarítmica - Urgente!

Função Logarítmica - Urgente!

Mensagempor Asustek27 » Dom Mar 14, 2010 19:24

Boa noite,
Tenho bastantes dificuldades no exercício seguinte. Alguém me ajuda a resolver?
Eu não consegui resolver este exercício, pois não compreendi ao certo quais os passos a fazer, daí só ter apresentado o exercício em si para que alguém me ajude na resolução do mesmo.

2. "Na figura está parte da representação gráfica da função f , de domínio IR+ , definida por f(x) = ln x (ln designa logaritmo de base e ) .

Imagem

Os pontos A e C , que pertencem ao gráfico da função f , são vértices de um rectângulo [ABCD] , de lados paralelos aos eixos do referencial.

As abcissas de A e de C são 2 e 6 , respectivamente.

2.1. Determine a ordenada do ponto:
a) A;

b) C.

2.2. Use as propriedades dos logaritmos para escrever na forma de um único logaritmo:
a)
__
CD

b) a área do rectângulo [ABCD]
Asustek27
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mar 14, 2010 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Programação
Andamento: cursando

Re: Função Logarítmica - Urgente!

Mensagempor MarceloFantini » Dom Mar 14, 2010 23:01

Boa noite.

Para encontrar a ordenada, basta substituir na função. Lembre-se que você não precisa dar um valor exato.

O gráfico é y = f(x) = \ln {x}. O ponto A tem abscissa 2, então sua ordenada será: y_a = f(2) = \ln {2}.

Analogamente para o C: y_c = f(6) = \ln {6}.

Para a segunda questão, pense nas propriedades do retângulo. O ponto D tem a mesma ordenada que A, portanto y_d = y_a = \ln {2}. O ponto C, como calculado anteriormente, tem ordenada y_c = \ln {6}. O segmento \overline{CD} tem comprimento y_c - y_d, logo:

y_c - y_d = \ln {6} - \ln {2} = \ln {\frac{6}{2}} = \ln {3}

A área é l_1 \times l_2, certo? Nós temos os dois lados, um de comprimento 4 e outro de comprimento \ln {3}, então:

S_{ABCD} = 4 \times \ln {3} = \ln {3^4}

É na verdade apenas um exercício para trabalhar com as propriedades de logaritmo.

Espero ter ajudado.

Um abraço.
Futuro MATEMÁTICO
e^{\pi \cdot i} +1 = 0
MarceloFantini
Colaborador Moderador
Colaborador Moderador
 
Mensagens: 3126
Registrado em: Seg Dez 14, 2009 11:41
Formação Escolar: GRADUAÇÃO
Andamento: formado

Re: Função Logarítmica - Urgente!

Mensagempor Asustek27 » Seg Mar 15, 2010 15:25

Fantini escreveu:Boa noite.

Para encontrar a ordenada, basta substituir na função. Lembre-se que você não precisa dar um valor exato.

O gráfico é y = f(x) = \ln {x}. O ponto A tem abscissa 2, então sua ordenada será: y_a = f(2) = \ln {2}.

Analogamente para o C: y_c = f(6) = \ln {6}.

Para a segunda questão, pense nas propriedades do retângulo. O ponto D tem a mesma ordenada que A, portanto y_d = y_a = \ln {2}. O ponto C, como calculado anteriormente, tem ordenada y_c = \ln {6}. O segmento \overline{CD} tem comprimento y_c - y_d, logo:

y_c - y_d = \ln {6} - \ln {2} = \ln {\frac{6}{2}} = \ln {3}

A área é l_1 \times l_2, certo? Nós temos os dois lados, um de comprimento 4 e outro de comprimento \ln {3}, então:

S_{ABCD} = 4 \times \ln {3} = \ln {3^4}

É na verdade apenas um exercício para trabalhar com as propriedades de logaritmo.

Espero ter ajudado.

Um abraço.


Olá Fantini.
Era isso mesmo. Gostava imenso de lhe agradecer a sua preciosa ajuda, pois estava perdido num exercício que vendo agora, era bastante simples.

Grande abraço, alguma coisa que possa ajudar, disponha.
Cumprimentos!
Asustek27
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Dom Mar 14, 2010 18:55
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Programação
Andamento: cursando


Voltar para Logaritmos

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?