• Anúncio Global
    Respostas
    Exibições
    Última mensagem

volume do cubo

volume do cubo

Mensagempor irineu junior » Sex Mar 12, 2010 21:32

Boa noite
O valor numérico do volume de um cubo é igual ao valor numérico do perímetro de seus lados. qual valor desse volume.
Eu acertei essa questao porem foi puro chute, gostaria de saber resolver esse problema, poderiam me ajudar.
A-2
B-4
C-6
D-8
E-10
irineu junior
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Sex Mar 12, 2010 20:37
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: volume do cubo

Mensagempor Elcioschin » Sáb Mar 13, 2010 15:06

V = P

a³ = 12*a ----> a² = 12 ----> a² = 4*3 ----> a = V(4*3) ----> a = 2*V3

V = a³ ----> V = a²*a ----> V = 12*(2*V3) ----> V = 24*V3

Favor conferir enunciado, pois, nenhuma alternativa atende.
Elcioschin
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 624
Registrado em: Sáb Ago 01, 2009 10:49
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: formado


Voltar para Geometria Espacial

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.