por orainha » Sex Fev 03, 2017 23:12
Boas,
Sou novo aqui e venho colocar a minha questão e o que fiz para a tentar resolver, ora bem:


para

que é o caso

, então

O problema é que não consigo sair da indeterminação. Tenho a solução final de -1, mas preciso de saber como lá chegar
Divisão de polinomios é solução?
Alguém me pode ajudar??
Obrigado.
-
orainha
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Fev 03, 2017 22:51
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Matemática
- Andamento: cursando
por Alvaro UTFPR » Qui Mar 30, 2017 10:41

Eu cheguei em uma solução não muito satisfatória, mas pode ajudar.
Se voce tomar conta que o seu x tende a 2 pela esquerda, ou seja , um número menor que 2(ex:1.99) irá perceber que o módulo de |2-x|-{quando x>=0 2-x || quando x<0 -2+x} é sempre positivo quando se aproxima de 2, dessa forma >>|2-x|=2-x, eliminando o módulo.
Depois desse processo

=

= -1
-
Alvaro UTFPR
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Qui Mar 30, 2017 10:26
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por orainha » Qui Mar 30, 2017 21:42
Certo.
Não respondi a este tópico antes. Mas a solução passa por isso mesmo. Colocar o ''-'' em evidencia e trocar os sinais, equivalente a -1.

Ficamos com a solução final de -1.
Grande Abraço e Obrigado.
-
orainha
- Novo Usuário

-
- Mensagens: 2
- Registrado em: Sex Fev 03, 2017 22:51
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: Matemática
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [limite] Cancelar denominador
por emanes » Sex Ago 17, 2012 09:34
- 1 Respostas
- 1634 Exibições
- Última mensagem por e8group

Sex Ago 17, 2012 10:22
Cálculo: Limites, Derivadas e Integrais
-
- Limite com raiz de X no denominador
por janainasabidussi » Dom Out 26, 2014 17:42
- 1 Respostas
- 2088 Exibições
- Última mensagem por adauto martins

Seg Out 27, 2014 14:14
Cálculo: Limites, Derivadas e Integrais
-
- [LIMITE] Com a raiz no numerador e denominador!!
por mih123 » Seg Ago 27, 2012 03:52
- 6 Respostas
- 5097 Exibições
- Última mensagem por mih123

Ter Ago 28, 2012 15:09
Cálculo: Limites, Derivadas e Integrais
-
- [Limite]não consigo fazer com que o denominador não de zero.
por marcosmuscul » Ter Mar 26, 2013 12:52
- 2 Respostas
- 1869 Exibições
- Última mensagem por marcosmuscul

Ter Mar 26, 2013 19:48
Cálculo: Limites, Derivadas e Integrais
-
- Limite com raíz cubica sendo o denominador x
por danivelosor » Sáb Mar 28, 2015 21:49
- 1 Respostas
- 2395 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 04, 2015 18:48
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 12 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.