• Anúncio Global
    Respostas
    Exibições
    Última mensagem

kumon

kumon

Mensagempor zenildo » Qui Dez 29, 2016 21:10

Esse problema tentei resolver mas não consegui. É da minha irmã. Alguém?
Anexos
Problema de Kumon.jpg
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 308
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: kumon

Mensagempor adauto martins » Seg Jan 02, 2017 15:22

A(x)=\int_{(x,0)}^{(x,y)}({y}_{r}-{x}^{3})dx...,onde {y}_{r} é a equaçao da reta a ser determinda e (0,x),(x,y) serao os pontos de intersecçao da reta com o eixo x,e interseçao da reta com a curva {y}_{r}={x}^{3},q. sera o intervalo de integraçao...determine-os...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: kumon

Mensagempor adauto martins » Qui Jan 05, 2017 11:05

vamos a soluçao desse problema:
a equaçao da reta tangente:
{y}_{r}-{y}_{0}=f'({x}_{0})(x-{x}_{0})...,como foi dado o ponto (0,2) \Rightarrow {y}_{0}=2...
o ponto (\sqrt[3]{2},2)\in {y}_{r},{x}^{3},logo a equaçao da reta tangente sera:
{y}_{r}-2=f'(\sqrt[3]{2})(x-\sqrt[3]{2})...os pontos onde {y}_{r}={x}^{3},serao os limites de integraçao da integraçao em questao:
3.(\sqrt[3]{2})^{2}).(x-\sqrt[3]{2})+2={x}^{3}\Rightarrow {x}^{3}-3.(\sqrt[3]{2})^{2}(x-\sqrt[3]{2})-2=0\Rightarrow 


{x}^{3}-3.(\sqrt[3]{2})^{2})x+(3.\sqrt[3]{2}-2)=0,ai agora é resolver essa equaçao de terceiro grau...
bom pra resolver isso pode-se usar a reduçao de polinomios,caso tenha raizes complexas havera somente uma raiz real,caso esse q. nao resolve o problema pois precisa de duas raizes reais q. serao os limites da integral,ou entao usar a formula do calculo de raizes da eq. de terceiro grau...ai meu caro é com vcs,maos a obra...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 663
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Equações

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.