por Matheus321 » Ter Nov 22, 2016 16:16
Pelo o que eu estava vendo no wolfram o resultado da derivada F(X)=x^2+3x+7 quando x = 0 o resultado é 3 mas não entendi o por que o 3 não está sendo multiplicado pelo X que por sua vez é igual a 0 ? Não deveria ser 0 o resultado?
-
Matheus321
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Out 25, 2016 21:01
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por mayconlucas » Ter Nov 22, 2016 20:21
A derivada de uma função f(x) é o coeficiente angular da reta tangente na função f(x).
Ou seja, a derivada F'(x)=2x + 3 é forma geral de descrever o coeficiente angular da reta tangente da função F(x) = x^2+3x+7.
Qualquer valor de X que vc aplicar na derivada F'(x), vc irá obter um valor y', que é o coeficiente angular da reta tangente na F(x).
Exemplo:
Se vc aplicar x=0 na F(x) = x^2+3x+7 teremos F(0) = 7, ou seja, quando x=0 temos o y=7, então temos o ponto P(0,7).
Para descobrirmos o coeficiente angular da reta tangente que passa pelo ponto P, aplicamos o 0 na derivada F'(x)=2x + 3 e ficamos com => F'(0) = 2.(0) + 3 = 3 .
O resultado F'(0)=3 é o coeficiente angular da reta tangente da função F(x) = x^2+3x+7 quando x=0, ou seja, quando passa pelo ponto P(0,7).
-
mayconlucas
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Seg Nov 09, 2015 09:32
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Derivada] Ajuda com calculo de derivada de função quociente
por alienpuke » Dom Out 25, 2015 15:31
- 1 Respostas
- 12556 Exibições
- Última mensagem por Cleyson007

Dom Out 25, 2015 16:47
Cálculo: Limites, Derivadas e Integrais
-
- [derivada] derivada pela definição da secante
por TheKyabu » Sáb Out 27, 2012 23:24
- 2 Respostas
- 10891 Exibições
- Última mensagem por TheKyabu

Dom Out 28, 2012 11:44
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada] Com duas variáveis e derivada mista
por leticiaeverson » Dom Abr 22, 2018 00:39
- 3 Respostas
- 13196 Exibições
- Última mensagem por Gebe

Dom Abr 22, 2018 17:11
Cálculo: Limites, Derivadas e Integrais
-
- [Derivada]derivada de função de raiz cúbica
por armando » Sáb Jul 20, 2013 15:22
- 4 Respostas
- 14802 Exibições
- Última mensagem por armando

Dom Jul 21, 2013 22:17
Cálculo: Limites, Derivadas e Integrais
-
- [DERIVADA] DERIVADA POR DEFINIÇÃO DA RAIZ DO MÓDULO DE X
por Matheusgdp » Qua Set 16, 2015 04:07
- 2 Respostas
- 5116 Exibições
- Última mensagem por Matheusgdp

Qui Set 17, 2015 18:31
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.