por Fred Pellegrini » Sex Out 28, 2016 18:21
Como provar os seguintes limites pela definição?
a) Lim (x² - 2x + 1) = 1
x->2
b) lim (x² + 4x + 4) = 1
x->-1
c) lim (3x² - 7x +2) = -2
x->1
-
Fred Pellegrini
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Sex Out 28, 2016 18:12
- Formação Escolar: ENSINO MÉDIO
- Andamento: formado
por adauto martins » Seg Out 31, 2016 10:14
essa questao eu ja resolvi ela uma pa de vezes,mas vamos a mais uma:
definiçao formal de limite:

dado um

,existe pelo menos um

(existem ifinitos deltas,por que?),tal que satisfaça a:

...entao vamos a questao a),as outras ficam como exercicios...

:
entao dado um

,existe pelo um

,

...esse

tera q. ser em funçao do

dado,ou seja:

e geralmente,escolhe-se o menor

,ou seja
![\delta =min[{\delta}_{1},{\delta}_{2},...] \delta =min[{\delta}_{1},{\delta}_{2},...]](/latexrender/pictures/d4247bbef86a62e625a9a6c176f73ffc.png)
...agora vamos ao calculo...temos q.

e q.

,como

,logo temos q.

...resolvendo essa inequaçao,encontraremos dois deltas...
![{\delta}_{1}=\sqrt[]{1+\varepsilon}-1,{\delta}_{2}=\sqrt[]{1+\varepsilon}+1... {\delta}_{1}=\sqrt[]{1+\varepsilon}-1,{\delta}_{2}=\sqrt[]{1+\varepsilon}+1...](/latexrender/pictures/3ab1e8b9e36a928ae2654c9f0fc5400a.png)
...vamos tomar

...logo,teremos:
![\left|({x}^{2}-2x+1)-1 \right|=\left|{x}^{2}-2x \right|\preceq\left|x \right|.\left|x-2 \right|\prec (\delta+2).\delta={\delta}^{2}+2.\delta={(\sqrt[]{\varepsilon+1}-1})^{2}+2.(\sqrt[]{\varepsilon+1})=...\prec \varepsilon \left|({x}^{2}-2x+1)-1 \right|=\left|{x}^{2}-2x \right|\preceq\left|x \right|.\left|x-2 \right|\prec (\delta+2).\delta={\delta}^{2}+2.\delta={(\sqrt[]{\varepsilon+1}-1})^{2}+2.(\sqrt[]{\varepsilon+1})=...\prec \varepsilon](/latexrender/pictures/244cca570e64f5ff9db7f6639bd3d9fb.png)
...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Limites pela definição formal
por joaofonseca » Ter Out 11, 2011 09:38
- 1 Respostas
- 2657 Exibições
- Última mensagem por joaofonseca

Qua Out 12, 2011 19:29
Cálculo: Limites, Derivadas e Integrais
-
- Limites pela definição formal
por ramoncampos » Ter Nov 01, 2016 21:20
- 4 Respostas
- 9339 Exibições
- Última mensagem por ramoncampos

Sex Nov 04, 2016 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Limites] Limites pela definiçao
por JoaoLuiz07 » Qui Ago 27, 2015 16:55
- 1 Respostas
- 1677 Exibições
- Última mensagem por adauto martins

Sáb Ago 29, 2015 20:52
Cálculo: Limites, Derivadas e Integrais
-
- Derivada pela Definiçao
por PeIdInHu » Sáb Mai 22, 2010 17:24
- 1 Respostas
- 2109 Exibições
- Última mensagem por admin

Sáb Mai 22, 2010 18:24
Cálculo: Limites, Derivadas e Integrais
-
- Integral pela definição
por ARCS » Sáb Abr 09, 2011 15:49
- 1 Respostas
- 1433 Exibições
- Última mensagem por LuizAquino

Dom Abr 10, 2011 13:33
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.