• Anúncio Global
    Respostas
    Exibições
    Última mensagem

transformação linear

transformação linear

Mensagempor p1a2u3lo » Dom Set 18, 2016 11:08

Mostrar que a transformacão linear A : R2 R3 A(x; y) = (x + y, x - y, y) e injetiva e
obter uma inversa a esquerda linear.
p1a2u3lo
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Dom Set 18, 2016 10:50
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: transformação linear

Mensagempor adauto martins » Qua Jan 11, 2017 14:47

para que A:{\Re}^{2}\rightarrow {\Re}^{3},teremos q. ter A(x,y)=(0,0,0),x=y=0...
de fato,
A(x,y)=(x+y,x-y,y)=(0,0,0)\Rightarrow 

x+y=0

x-y=0

y=0

\Rightarrow x=y=0...

para se ter uma inversa,qquer q. seja a multiplicaçao(a direita ou esquerda),deve-se mostrar q.A é sobrejetiva...

seja v=(a.(x+y),b(x-y),c.y)=x.(a+b)+y.(a-b+c)\Rightarrow [a(1,1,0),b(1,-1,0),c(0,0,1)] é uma base p/ IM(A)...logo dim(IM)=3...A é sobrejetiva....portanto admite inversa...entao:
{A}^{-1}.A=I......calcule {A}^{-1},como exercicio...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: transformação linear

Mensagempor adauto martins » Qui Jan 12, 2017 12:00

uma correçao:
a transf.A:{\Re}^{2}\rightarrow {\Re}^{3},nao é sobrejetiva,pois:
v=(x+y,x-y,y)=x(1,1,0)+y(1,-1,0)\Rightarrow [(1,1,0),(1,-1,0)] é uma base de IM(A),logo
dim(IM)=2\neq 3,portanto nao é sobrejetiva...
logo admite,por ser injetiva somente multiplicaçao á esquerda de A...
\exists {A}^{-1}/ {A}^{-1}.A={I}_{({\Re}^{2})}......
\begin{pmatrix}
   a & b  \\ 
   c & d 
\end{pmatrix}.
\begin{pmatrix}
   2 & 1  \\ 
   0 & 1  \\
   1 & 0  
\end{pmatrix}=
\begin{pmatrix}
   1 & 0  \\ 
   0 & 1 
\end{pmatrix}
bom ai agora é achar os valores de a,b,c,d...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 670
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Álgebra Linear

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 09:10

Veja este exercício:

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} e B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z}, então o número de elementos A \cap B é:

Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.

Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?

No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?

A resposta é 3?

Obrigado.


Assunto: método de contagem
Autor: Molina - Seg Mai 25, 2009 20:42

Boa noite, sinuca.

Se A = {x \in Z \hspace{1mm} | \hspace{1mm} \frac{20}{x} = n, n \in N} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é A = {1, 2, 4, 5, 10, 20}

Se B = {x \in R \hspace{1mm} | \hspace{1mm} x = 5m, m \in z} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...

Feito isso precisamos ver os números que está em ambos os conjuntos, que são: 5, 10 e 20 (3 valores, como você achou).

Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?

sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:

existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x

A resposta é 3? Sim, pelo menos foi o que vimos a cima


Bom estudo, :y:


Assunto: método de contagem
Autor: sinuca147 - Seg Mai 25, 2009 23:35

Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.

Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:

Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?

Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?



cron