por karenfreitas » Seg Ago 22, 2016 19:08
Resolva a equação:

Agradeço a ajuda prestada para como proceder com essa questão.
-
karenfreitas
- Usuário Ativo

-
- Mensagens: 12
- Registrado em: Qua Mai 04, 2016 14:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia
- Andamento: cursando
por adauto martins » Sáb Ago 27, 2016 16:11
temos um polinomio de quarto grau(4 raizes reais ou complexas)com coeficientes de num.inteiros,logo teremos
q. existe pelo menos um

onde

,ou seja primos entre si...essa ou essas raizes sairao dos divisores de

...onde

...logo o conjunto onde ha possibilidade de termos uma raiz sera:
{

}...o raio de existencia das possiveis raizes é dado por:

p/

...em nosso caso

...[

]...entao do conj. das possiveis raizes tiramos apenas o num.

...e agora é testar uma por uma e encontrar uma ou mais raizes racionais...se

,ai faremos q.

,ou seja vai baixando o grau do polinomio,ate chegarmos a um polinomio de segundo grau,onde possivelmente encontraremos raizes reais ou complexas...é pór ai,nao é facil,é calculo e calculos...maos a obra...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Números Complexos
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Raízes de números complexos
por Rennannn » Qua Fev 27, 2013 10:27
- 8 Respostas
- 5426 Exibições
- Última mensagem por natanaelskt

Qua Mar 27, 2013 14:18
Números Complexos
-
- Raizes de equação de grau>=3
por spyderkill » Qua Mai 09, 2012 17:31
- 2 Respostas
- 2299 Exibições
- Última mensagem por pedroaugustox47

Sex Mai 11, 2012 02:33
Polinômios
-
- Raizes de equação de grau>=3
por citadp » Qua Jun 20, 2012 09:32
- 3 Respostas
- 2147 Exibições
- Última mensagem por Russman

Sex Jul 06, 2012 15:49
Cálculo: Limites, Derivadas e Integrais
-
- Raizes da equaçao do 2° grau
por hissamo » Sex Abr 10, 2015 15:57
- 1 Respostas
- 1717 Exibições
- Última mensagem por DanielFerreira

Sáb Abr 11, 2015 17:14
Equações
-
- Raizes de uma equação de terceiro grau.
por 380625 » Dom Mar 27, 2011 13:58
- 3 Respostas
- 2858 Exibições
- Última mensagem por MarceloFantini

Dom Mar 27, 2011 18:09
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.