por duduxo81 » Sex Jul 08, 2016 11:30
Estou com uma dúvida referente se e possivel resolver o seguinte limite usando L'Hospital, segue abaixo o exercício

-
duduxo81
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jul 08, 2016 11:21
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciências Exatas
- Andamento: cursando
por vitor_jo » Dom Jul 10, 2016 04:04
Não só pode como deve.
Note, isso tudo pode ser escrito como e^(xln[x-2]/[x+1]), certo?
Trabalhando agora com (xln[x-2]/[x+1]), você pode reescrevê-lo assim
(ln[x-2]/[x+1])/1/x, onde, se você aplicasse o limite, ter-se-ia 0/0, uma indeterminação, podendo-se usar L'Hopital
(Isso é um clássico problema de manipulação de limites para se resolver por L'Hopital).
Assim, derive em cima e embaixo (ln[x-2]/[x+1])/1/x)
Você vai ter em cima: 3/(x+1)(x-2) e embaixo, -1/x²,
Fazendo as devidas manipulações, você terá algo como e^[-3x²/x²...], jogando o limite, você terá e^(-3), eis a resposta.
-
vitor_jo
- Usuário Ativo

-
- Mensagens: 22
- Registrado em: Qua Jan 14, 2015 05:36
- Formação Escolar: PÓS-GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por adauto martins » Seg Jul 11, 2016 17:29
usarei o limite fundamental:

,onde

,é o

neperiano:
prim.vamos calcular:

...


=

...logo:



...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por duduxo81 » Qua Jul 13, 2016 11:28
Victor_Jo, muito obrigado, entendi a base do exercício mas a parte dos cálculos não consegui chegar. Como você achou esse 3/(x+1)(x-2) ?
-
duduxo81
- Novo Usuário

-
- Mensagens: 8
- Registrado em: Sex Jul 08, 2016 11:21
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Ciências Exatas
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- L'Hospital
por cal12 » Sáb Nov 26, 2011 17:52
- 1 Respostas
- 1587 Exibições
- Última mensagem por LuizAquino

Sáb Nov 26, 2011 18:13
Cálculo: Limites, Derivadas e Integrais
-
- l'hospital
por vinicastro » Dom Dez 16, 2012 16:32
- 1 Respostas
- 1442 Exibições
- Última mensagem por vinicastro

Dom Dez 16, 2012 17:15
Cálculo: Limites, Derivadas e Integrais
-
- L'Hospital
por matmatco » Sáb Fev 23, 2013 16:35
- 1 Respostas
- 1547 Exibições
- Última mensagem por LuizAquino

Ter Fev 26, 2013 17:09
Cálculo: Limites, Derivadas e Integrais
-
- Regra de L'Hospital
por Claudin » Qui Jul 14, 2011 20:26
- 2 Respostas
- 1817 Exibições
- Última mensagem por Claudin

Qui Jul 14, 2011 20:46
Cálculo: Limites, Derivadas e Integrais
-
- Regra de L'Hospital
por Claudin » Qui Jul 14, 2011 21:16
- 9 Respostas
- 3090 Exibições
- Última mensagem por MarceloFantini

Sáb Jul 16, 2011 15:20
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Dom Jan 17, 2010 14:42
Não sei onde este tópico se encaixaria. Então me desculpem.
Eu não entendi essa passagem, alguém pode me explicar?

O livro explica da seguinte forma.
1°) P(1) é verdadeira, pois

2°) Admitamos que

, seja verdadeira:

(hipótese da indução)
e provemos que

Temos: (Nessa parte)

Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Seg Jan 18, 2010 01:55
Boa noite Fontelles.
Não sei se você está familiarizado com o
Princípio da Indução Finita, portanto vou tentar explicar aqui.
Ele dá uma equação, no caso:
E pergunta: ela vale para todo n? Como proceder: no primeiro passo, vemos se existe pelo menos um caso na qual ela é verdadeira:
Portanto, existe pelo menos um caso para o qual ela é verdadeira. Agora, supomos que

seja verdadeiro, e pretendemos provar que também é verdadeiro para

.
Daí pra frente, ele usou o primeiro membro para chegar em uma conclusão que validava a tese. Lembre-se: nunca saia da tese.
Espero ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Seg Jan 18, 2010 02:28
Mas, Fantini, ainda fiquei em dúvida na passagem que o autor fez (deixei uma msg entre o parêntese).
Obrigado pela ajuda, mesmo assim.
Abraço!
Assunto:
Princípio da Indução Finita
Autor:
Fontelles - Qui Jan 21, 2010 11:32
Galera, ajuda aí!
Por falar nisso, alguém conhece algum bom material sobre o assunto. O livro do Iezzi, Matemática Elementar vol. 1 não está tão bom.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Jan 21, 2010 12:25
Boa tarde Fontelles!
Ainda não estou certo de qual é a sua dúvida, mas tentarei novamente.
O que temos que provar é isso:

, certo? O autor começou do primeiro membro:
Isso é verdadeiro, certo? Ele apenas aplicou a distributiva. Depois, partiu para uma desigualdade:
Que é outra verdade. Agora, com certeza:
Agora, como

é

a

, e este por sua vez é sempre

que

, logo:
Inclusive, nunca é igual, sempre maior.
Espero (dessa vez) ter ajudado.
Um abraço.
Assunto:
Princípio da Indução Finita
Autor:
Caeros - Dom Out 31, 2010 10:39
Por curiosidade estava estudando indução finita e ao analisar a questão realmente utilizar a desigualdade apresentada foi uma grande sacada para este problema, só queria tirar uma dúvida sobre a sigla (c.q.d), o que significa mesmo?
Assunto:
Princípio da Indução Finita
Autor:
andrefahl - Dom Out 31, 2010 11:37
c.q.d. = como queriamos demonstrar =)
Assunto:
Princípio da Indução Finita
Autor:
Abelardo - Qui Mai 05, 2011 17:33
Fontelles, um bom livro para quem ainda está ''pegando'' o assunto é:'' Manual de Indução Matemática - Luís Lopes''. É baratinho e encontras na net com facilidade. Procura também no site da OBM, vais encontrar com facilidade material sobre PIF... em alguns sites que preparam alunos para colégios militares em geral também tem excelentes materiais.
Assunto:
Princípio da Indução Finita
Autor:
MarceloFantini - Qui Mai 05, 2011 20:05
Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Assunto:
Princípio da Indução Finita
Autor:
Vennom - Qui Abr 26, 2012 23:04
MarceloFantini escreveu:Abelardo, faz 1 ano que o Fontelles não visita o site, da próxima vez verifique as datas.
Rpz, faz um ano que o fulano não visita o site, mas ler esse comentário dele enquanto respondia a outro tópico me ajudou. hAUEhUAEhUAEH obrigado, Marcelo. Sua explicação de indução finita me sanou uma dúvida sobre outra coisa.

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.