por raquelzinha72 » Dom Jun 05, 2016 08:32
lim quando x tende a 0 de (9^x-5^x)/x
-
raquelzinha72
- Novo Usuário

-
- Mensagens: 5
- Registrado em: Seg Mai 16, 2016 21:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Ciências Biológicas
- Andamento: cursando
por Cleyson007 » Dom Jun 05, 2016 10:57
Olá, bom dia!
Utilize a Regra de L'Hopital dado que por substituição direta têm-se uma indeterminação do tipo 0/0. Lembre-se que se y = a^x, então y' = a^x . ln(a).
Aplicando ao problema proposto, temos que:
Lim ( x -> 0 ) 9^x . (ln (9)) - 5^x . (ln (5))
Aplicando a propriedade dos logarítmos obterás como resposta: ln (9/5).
Espero ter lhe ajudado.
Comente qualquer dúvida.
-

Cleyson007
- Colaborador Voluntário

-
- Mensagens: 1228
- Registrado em: Qua Abr 30, 2008 00:08
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática UFJF
- Andamento: formado
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Não sei como Resolver
por eli83 » Qua Out 10, 2012 09:48
- 7 Respostas
- 2996 Exibições
- Última mensagem por MrJuniorFerr

Qua Out 10, 2012 23:22
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver limite exponencial
por joaofonseca » Sex Mar 30, 2012 12:59
- 2 Respostas
- 2116 Exibições
- Última mensagem por joaofonseca

Sáb Mar 31, 2012 11:15
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver esse limite?
por samra » Sáb Mar 31, 2012 02:38
- 4 Respostas
- 3357 Exibições
- Última mensagem por fraol

Dom Abr 01, 2012 14:56
Cálculo: Limites, Derivadas e Integrais
-
- Como resolver esse limite?
por duborgis » Sex Abr 06, 2012 13:29
- 12 Respostas
- 7392 Exibições
- Última mensagem por Fabio Wanderley

Dom Abr 08, 2012 16:04
Cálculo: Limites, Derivadas e Integrais
-
- como resolver esse limite
por mayconf » Dom Set 23, 2012 01:31
- 4 Respostas
- 2476 Exibições
- Última mensagem por mayconf

Seg Set 24, 2012 02:50
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.