por jacquelinerocha » Sáb Mai 14, 2016 21:39
Boa noite, não consegui interpretar a questão a seguir para obter a resposta final, pois não estou sabendo visualizar o triângulo retângulo no ponto X equidistante do posto e do terminal do gasoduto.
Um posto de manutenção foi notificado sobre a necessidade de reparos em certo ponto de um gasoduto retilíneo. Sabe-se que esse posto localiza-se a 12 km do gasoduto e a 20 km do terminal do gasoduto. Se o ponto X, onde devem ser feito os reparos, equidista do posto e do terminal do gasoduto, a distância de X a cada um desses dois lugares, em quilômetros,é:
a) 8,5
b) 9
c) 12,5
d) 15
e) 16,5
Consegui resolver até aqui:
![{20}^{2} = {12}^{2}+{GT}^{2}
{GT}^{2} = 400-144
{GT}^{2} = 256
GT = \sqrt[]{256}
GT = 16 cm {20}^{2} = {12}^{2}+{GT}^{2}
{GT}^{2} = 400-144
{GT}^{2} = 256
GT = \sqrt[]{256}
GT = 16 cm](/latexrender/pictures/bf41bb3ab7706e0324391ba9ca6a2a40.png)
-
jacquelinerocha
- Novo Usuário

-
- Mensagens: 3
- Registrado em: Ter Mai 10, 2016 14:47
- Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
- Área/Curso: curso técnico em mecânica
- Andamento: formado
Voltar para Álgebra Elementar
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- teorema de pitagoras
por stanley tiago » Sex Jan 21, 2011 15:59
- 5 Respostas
- 4672 Exibições
- Última mensagem por stanley tiago

Sáb Jan 22, 2011 15:49
Geometria Analítica
-
- teorema de pitagoras
por stanley tiago » Dom Fev 13, 2011 18:35
- 4 Respostas
- 3521 Exibições
- Última mensagem por stanley tiago

Seg Fev 14, 2011 22:00
Geometria Analítica
-
- teorema de pitagoras
por stanley tiago » Sáb Fev 19, 2011 10:26
- 1 Respostas
- 1931 Exibições
- Última mensagem por stanley tiago

Dom Fev 20, 2011 17:48
Geometria Analítica
-
- Teorema de Pitágoras
por Lorrane12 » Sex Mar 23, 2012 19:50
- 9 Respostas
- 12654 Exibições
- Última mensagem por DanielFerreira

Sex Mar 30, 2012 00:19
Trigonometria
-
- Teorema de Pitágoras
por Luciana Dias » Sex Mar 23, 2012 22:46
- 2 Respostas
- 2000 Exibições
- Última mensagem por Luciana Dias

Sex Mar 23, 2012 23:06
Trigonometria
Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.