• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada

Derivada

Mensagempor Vilson » Ter Mar 08, 2016 21:18

A forma do tanque deve ser na forma de um CILINDRO REGULAR COM UM HEMISFÉRIO EM CADA EXTREMIDADE. Se a capacidade desejada do tanque é de 5m³, quais as dimensões que exigem menor quantidade de aço ? Despreze a espessura das paredes?
Vilson
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Mar 08, 2016 21:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Fisica
Andamento: cursando

Re: Derivada

Mensagempor adauto martins » Qui Mar 10, 2016 17:59

V=\pi.{r}^{2}.h\Rightarrow h=5/(\pi.{r}^{2})...
{A}_{t}=2.\pi.{r}^{2}+2r.h=2\pi{r}^{2}+5/(\pi.r)\Rightarrow dA/dr=4.\pi.r-5.\pi/{r}^{2}\Rightarrow dA/dr=0\Rightarrow (4.\pi.{r}^{3}-5\pi)/{r}^{2}=0\Rightarrow 4.\pi.{r}^{3}-5\pi=0\Rightarrow 4.{r}^{3}-5=0\Rightarrow  r=\sqrt[3]{(5/4)}...h=5/(\pi.\sqrt[3]{(25/16)}...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Derivada

Mensagempor rzarour » Dom Mar 13, 2016 01:17

Preciso de uma luz para entender a resolução do problema proposto pelo Vilson, pois não consegui encontrar referência nos cálculos que considerassem "um hemisfério em cada extremidade", conforme enunciado da questão.

Grato!
rzarour
Novo Usuário
Novo Usuário
 
Mensagens: 4
Registrado em: Seg Fev 29, 2016 02:05
Formação Escolar: ENSINO MÉDIO PROFISSIONALIZANTE
Área/Curso: Técnico em Eletrotécnica
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}