• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Cônicas] O lugar geométrico dos vértices da parábola.

[Cônicas] O lugar geométrico dos vértices da parábola.

Mensagempor Matheus Brito 2014 » Qui Set 10, 2015 22:40

(UNIFESP) A parábola y = x² - nx + 2 tem vértice no ponto (Xn, Yn). O lugar geométrico dos vértices da parábola, quando n varia no conjunto dos números reais, é

a) uma parábola.
b) uma elipse.
c) um ramo de uma hipérbole.
d) uma reta.
e) duas retas concorrentes.

*Alternativa correta: a)
Matheus Brito 2014
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Ter Set 08, 2015 20:48
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [Cônicas] O lugar geométrico dos vértices da parábola.

Mensagempor nakagumahissao » Sex Set 11, 2015 14:47

Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}