• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Divergente, gradiente e rotacional.

Divergente, gradiente e rotacional.

Mensagempor Crisaluno » Qui Set 03, 2015 04:37

Estou com uma dúvida nessas 3 questões:
1°) Sejam f um escalar e F um campo vetorial quaisquer. Se existem as derivadas parciais provar: div(f F) = f [ div(F)] + [ grad(f)] * F
2°)Se r(vetor)= xi + yj + zk é o chamado vetor posição, provar:
a) div(r) = 3
b) rot(r) = 0
c)Nabla II r II = r / |r|
3°) define-se nabla^2 como operador Laplaciano.
a) definir nabla^2 através de derivadas parciais;
b) se f e g são funções escalares dotadas de derivadas parciais segundas, provar :
nabla*(nabla f )= nabla^2 f

Segue o gabarito com as respostas :

1°)div (F) = f [div (F)] + [ grad (f) ] * F...é verdadeira.
2°) a) div (r) =3 ; b) rot (r) = 0 ; c) Nabla |r|= r / |r|...verdadeira
3°)verdadeira..

obs: Estou tendo muita dificuldade de com esses exercícios. seria possível mostrar o passo a passo até o resultado?
Crisaluno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 03, 2015 03:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: Divergente, gradiente e rotacional.

Mensagempor adauto martins » Sáb Set 05, 2015 12:28

div(f.F)=\nabla .(f.F)=(\partial/\partial x)(F.f)+(\partial/\partial y)(f.F)+(\partial/\partial z)(f.F)..MEU EDITOR NAO ESTA FUNCIONANDO AQUI,MAS VAMOS LA NO JEITO Q. DER...
a)
div(f.F)=(D/x)(f.F)+(D/y)(f.F)+(D/z)(f.F),onde (D/x),(D/y),(D/z) sao as derivadas parciais em relaçao aos eixos x,y,z...
div(f.F)=(Df(x).F+DF(x).f)+(Df(y).F+DF(y).f)+(D(z)f+D(F(z))=f.(DF(x)+DF(y)+DF(z))+(Df(x)+Df(y)+Df(z))=f.div(F)+grad(f).F,aqui usei a regra da derivada do produto...
b)
r=(x,y,z)...div(r)=(D/x)r+(D/y)r+(D/z)=1+1+1=3
c)
rot(r)=produto vetrorial de r...olha sem o editor,te fala nuum da...espero q. entensa ai o q. fiz...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: Divergente, gradiente e rotacional.

Mensagempor Crisaluno » Dom Set 06, 2015 02:08

Muito obrigado!!!Muito obrigado mesmo...conseg ui acompanhar sua resolução.
Crisaluno
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qui Set 03, 2015 03:38
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59