• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Questões de Derivada

Questões de Derivada

Mensagempor GabrielM93 » Dom Jun 14, 2015 02:24

1. A parábola y=x²+C deve ser tangente à reta y=x. Calcule C. (Obs.: tentei igualar a derivada do primeiro y igual a x, porém eu encontrarei a derivada de C', e não C)

2. Mostre que a reta normal, em qualquer ponto do círculo x²+y²=a² passa pela origem.

Obrigado.
GabrielM93
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Jun 14, 2015 02:13
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Questões de Derivada

Mensagempor nakagumahissao » Sáb Jul 18, 2015 12:39

1. A parábola y=x²+C deve ser tangente à reta y=x. Calcule C.

Sabendo-se que a derivada da equação da parábola nos dará a inclinação da reta passando em qualquer ponto da parábola e sabendo-se também que esta inclinação deverá ser o mesmo que o da reta dada num determinado ponto, tem-se que:

y = x^2 + C \Rightarrow \frac{dy}{dx} = 2x

y = x \Rightarrow \frac{dy}{dx} = 1

Logo,

2x = 1 \Rightarrow x = \frac{1}{2}

A reta tocará na parábola quando x for 1/2 e y for 1/2, ou seja, no ponto (1/2, 1/2). Usando estes valores na equação da parábola teremos:

y = x^2 + C \Rightarrow \frac{1}{2} = \left(\frac{1}{2} \right) ^2 + C

\frac{1}{2} - \frac{1}{4} = C \Rightarrow  C = \frac{2-1}{4} \Rightarrow C = \frac{1}{4}

Assim a equação da parábola ficará:

y = x^2 + \frac{1}{4}


2. Mostre que a reta normal, em qualquer ponto do círculo x²+y²=a² passa pela origem.

Usando o cálculo 2, mais precisamente o conceito de Gradiente, tem-se que:

z = x^2 + y^2 - a^2

\nabla z = \frac{\partial z}{\partial x}i + \frac{\partial z}{\partial y}i

\nabla z = 2xi + 2yj

Que por sua vez são as próprias retas x e y que sempre passam por (0,0) como queríamos demonstrar.
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59