por zenildo » Qua Jul 15, 2015 00:11
A grande demanda de um novo modelo de equipamento digital provocou inicialmente um aumento em seu preço de mercado. No
entanto, depois de algum tempo, o lançamento por outros fabricantes de aparelhos similares, provocou uma queda nesses preços.
Observando?se a variação no preço, ano a ano, concluiu-se que ele poderia ser modelado através da função f(x)=2000.5^(2x-x²)/4, em que f(0) representa o preço de mercado no ano de lançamento do aparelho e f(x), para x > 0, representa o preço de mercado, x anos
após o lançamento do aparelho.
Sabendo que a partir de determinado ano t o preço do referido aparelho será inferior à metade do preço de lançamento e considerando
log 2 = 0,3, determine o valor de t.
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
por nakagumahissao » Qua Jul 15, 2015 10:53
O enunciado diz que f(0) é o preço de mercado no ano de Lançamento e que após t anos, f(t) = (1/2)f(0). Assim:




Sabendo-se que o preço de mercado no ano de Lançamento é de 2000, então, após t anos teremos que:


Agora:

Então:



Não foi dado o Log 5. Assumirei Log 5 = 0,7. Assim:


![\sqrt[]{\Delta} = \sqrt[]{b^2 - 4ac} \Rightarrow \sqrt[]{\Delta} = \sqrt[]{4 + 6,84} \Rightarrow \sqrt[]{\Delta} = 3,29 \sqrt[]{\Delta} = \sqrt[]{b^2 - 4ac} \Rightarrow \sqrt[]{\Delta} = \sqrt[]{4 + 6,84} \Rightarrow \sqrt[]{\Delta} = 3,29](/latexrender/pictures/f6a4b628e8a8bb5e7383335925a35761.png)
![\Rightarrow t = \frac{-b \pm \sqrt[]{\Delta}}{2a} \Rightarrow t = \frac{-2 \pm 3,29}{-2} \Rightarrow \Rightarrow t = \frac{-b \pm \sqrt[]{\Delta}}{2a} \Rightarrow t = \frac{-2 \pm 3,29}{-2} \Rightarrow](/latexrender/pictures/17ef82dff59ef14c1bc7284d4a92d38e.png)

e

Porém, estamos apenas interessados nos valores positivos para o tempo e desta maneira, a resposta será:
t = 2,645 anos aproximadamente. Ou seja, aproximadamente 2 anos,

7 Meses,

22 dias e algumas horas.
t = 2,645 = 2 anos, 7 meses, 22 dias.

Eu faço a diferença. E você?
Do Poema: Quanto os professores "fazem"?
De Taylor Mali
-
nakagumahissao
- Colaborador Voluntário

-
- Mensagens: 386
- Registrado em: Qua Abr 04, 2012 14:07
- Localização: Brazil
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Lic. Matemática
- Andamento: cursando
-
por zenildo » Qua Jul 15, 2015 11:01
Cara! como você chegou a esse nível de resolução?! eu também queria saber quanto tempo a pessoa demora mais ou menos para fazer essa questão.Visto que, tendo uma boa base.
Obrigado!
-
zenildo
- Colaborador Voluntário

-
- Mensagens: 309
- Registrado em: Sáb Abr 06, 2013 20:12
- Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
- Formação Escolar: EJA
- Área/Curso: PRETENDO/ DIREITO
- Andamento: cursando
Voltar para Funções
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Problema com função
por Bia_Oliveira » Qui Set 20, 2012 10:41
- 3 Respostas
- 4598 Exibições
- Última mensagem por Cleyson007

Sex Set 21, 2012 11:05
Funções
-
- [Problema com Função] problema de função Help!
por [ddxprj] » Dom Mai 19, 2013 14:58
- 0 Respostas
- 1036 Exibições
- Última mensagem por [ddxprj]

Dom Mai 19, 2013 14:58
Funções
-
- problema de função
por rcpn » Qui Abr 10, 2014 11:15
- 3 Respostas
- 4814 Exibições
- Última mensagem por Russman

Sex Abr 11, 2014 17:30
Álgebra Elementar
-
- Problema envolvendo função
por marianacarvalhops » Sáb Mai 02, 2009 17:46
- 1 Respostas
- 4335 Exibições
- Última mensagem por Marcampucio

Sáb Mai 02, 2009 18:27
Funções
-
- Função - Problema na conta
por guijermous » Ter Fev 16, 2010 11:05
- 5 Respostas
- 4512 Exibições
- Última mensagem por MarceloFantini

Ter Fev 16, 2010 12:03
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.