por Alvadorn » Sáb Fev 20, 2010 12:55

Gente eu to com uma pequena dificuldade na resolução dessa questão, eu não estou sabendo utilizar o dado fornecido pela mesma, em função do segmento requisitado, o BD
Alguém poderia me encaminhar como iniciar a solução da mesma?
Desde já agradeço a atenção!
-
Alvadorn
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sáb Fev 20, 2010 12:47
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
por Rodrigo Tomaz » Sáb Fev 20, 2010 14:24
Bom dia!
Estava dando uma olhadinha em sua questão e espero poder ajudá-lo.
No enunciado fornece apenas os ângulos e um lado.
Se você observar o angulo do vértice A é dividido em dois, um de 30° outro de 90°, formando um angulo de 120°.
O angulo do vértice C, também dividido em dois, mede ao todo 90°. Para saber quanto mede a parte restante subtrai-se com os 60º dados obtendo-se 30°.
Se formos olhar como resultou, teremos um triângulo ACE, com ângulos 120°,30 e 30°.
Como o triâgulo observado acima tem dois ângulos iguais, obrigatoriamente terá dois lados iguais (é um triângulo isósceles).
O lado fornecido AE, que mede 6cm, pertence ao triângulo e por não ser oposto ao ângulo diferente o lado AC terá o mesmo valor de 6cm.
Como o lado desejado pertence ao retângulo ABCD, e no mesmo AB=CD e AC=BD logo AC=BD=6cm
Essa questão também pode ser resolvida por outras linhas de raciocínio. Outra por exemplo seria fazer o jogo de senos, cossenos e tangentes descobrindo lado por lado até então chegar no valor desejado.
Eu acho que é isso,
Espero ter te ajudado
- Anexos
-

-
Rodrigo Tomaz
- Novo Usuário

-
- Mensagens: 4
- Registrado em: Sex Fev 19, 2010 10:49
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: técnico mecânica
- Andamento: cursando
por Alvadorn » Dom Fev 21, 2010 16:32
Sua resposta está certíssima, mas meu objetivo era resolver através de senos e cossenos, mas graças ao seu raciocínio eu consegui chegar a resposta através dos senos. Muito obrigado novamente!
-
Alvadorn
- Usuário Ativo

-
- Mensagens: 13
- Registrado em: Sáb Fev 20, 2010 12:47
- Formação Escolar: ENSINO MÉDIO
- Andamento: cursando
Voltar para Trigonometria
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Dificuldade
por Alison Bissoli » Qui Dez 03, 2009 13:40
- 6 Respostas
- 3638 Exibições
- Última mensagem por Elcioschin

Dom Dez 06, 2009 13:54
Estatística
-
- Dificuldade
por Mauricio pelinson » Qui Fev 02, 2012 19:22
- 0 Respostas
- 4279 Exibições
- Última mensagem por Mauricio pelinson

Qui Fev 02, 2012 19:22
Sequências
-
- Dificuldade
por Jhennyfer » Ter Jun 18, 2013 17:04
- 5 Respostas
- 5543 Exibições
- Última mensagem por jeniffer05

Dom Mai 11, 2014 15:32
Teoria dos Números
-
- dificuldade em geometria
por joanastefani10 » Seg Set 27, 2010 11:42
- 2 Respostas
- 2317 Exibições
- Última mensagem por JoaoGabriel

Seg Set 27, 2010 14:59
Geometria Plana
-
- Dificuldade na questão
por igorcalfe » Qua Nov 03, 2010 17:56
- 4 Respostas
- 3522 Exibições
- Última mensagem por igorcalfe

Sex Nov 05, 2010 18:30
Logaritmos
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.