• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Princípio fundamental da contagem

Princípio fundamental da contagem

Mensagempor zenildo » Qui Mai 21, 2015 18:10

Paulo possui 709 livros e identificou cada um destes livros com um código formado por três letras do nosso alfabeto, seguindo a “ordem alfabética” assim definida: AAA, AAB,..., AAZ, ABA, ABB,..., ABZ, ACA,... Então, o primeiro livro foi identificado com AAA, o segundo com AAB,... Nestas condições, considerando o alfabeto com 26 letras, o código associado ao último livro foi:

A) BAG. Eu queria que alguém comentasse esse problema, pois eu não sei se a resposta que ache está certa, letra A.



B) BAU.


C) BBC.


D) BBG.


E) BAB.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando

Re: Princípio fundamental da contagem

Mensagempor DanielFerreira » Sáb Mai 23, 2015 14:45

Fixemos as duas letras iniciais, ou seja, AA; a terceira poderá ser {A, B, C,..., Z}. Portanto, 26 possibilidades!

Fixemos as duas letras iniciais... AB; a terceira poderá ser ocupada por 26 letras.

Com isso, temos que ABZ ocupa 52ª posição.

Entendido o raciocínio, podemos galgar voos mais alto; como, por exemplo, fixar apenas a letra inicial, veja:

- fixando a primeira letra, que é A, então: para a segunda posição temos 26 possibilidades e para a terceira também. Portanto, começando pela letra A temos um total de 676 (26 . 26) códigos; logo, o código AZZ (que é o último iniciando por A) ocupa a 676ª posição.


Passemos para o código cujo o início é em BA, para a terceira posição temos 26 possibilidades; portanto, o código BAZ ocupa a posição 702 (676 + 26).

Ora, ficou fácil notar que precisamos de mais 7 códigos para alcançar os 709 livros. Daí,

703ª => BBA
704ª => BBB
705ª => BBC
706ª =>BBD
707ª => BBE
708ª => BBF
709ª => BBG
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1680
Registrado em: Qui Jul 23, 2009 21:34
Localização: Engº Pedreira - Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: cursando

Re: Princípio fundamental da contagem

Mensagempor zenildo » Sáb Mai 23, 2015 18:46

Muito obrigado, com o tempo agente pega o jeito de fazer a análise combinatória.
zenildo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 309
Registrado em: Sáb Abr 06, 2013 20:12
Localização: SALVADOR-BA, TERRA DO AXÉ! BAÊA!!!!!
Formação Escolar: EJA
Área/Curso: PRETENDO/ DIREITO
Andamento: cursando


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.