• Anúncio Global
    Respostas
    Exibições
    Última mensagem

problema

problema

Mensagempor ricks » Qua Mai 13, 2015 21:18

queria achar a hipotenusa de um triangulo sendo que há um angulo interno de 45º e a altura de 4 m
ricks
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Ter Mai 05, 2015 22:14
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: problema

Mensagempor nakagumahissao » Dom Jul 19, 2015 11:47

Há duas formas de se resolver este problema.

1) Se o ângulo interno vale 45 graus, então, o cateto oposto e o cateto adjacente valem o mesmo valor, ou seja, 4 cada. Assim, usando pitágoras teremos:

4^2 + 4^2 = h^2 \Rightarrow h^2 = 16 + 16 = 32 \Rightarrow h = \sqrt[]{32} \Rightarrow h = 4\sqrt[]{2}

2) Usando o fato de que:

\sin(45 = \pi / 4) = \frac{\sqrt[]{2}}{2}

então:

4 = h \sin \left(\frac{\pi}{4} \right) = h \frac{\sqrt[]{2}}{2}

h =  \frac{4 \times 2}{\sqrt[]{2}} = \frac{8}{\sqrt[]{2}}

Racionalizando o denominador tem-se que:

h =   \frac{8}{\sqrt[]{2}} \times \frac{\sqrt[]{2}}{\sqrt[]{2}}

h =  8 \frac{\sqrt[]{2}}{2}h =  4\sqrt[]{2}
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}