• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada como resolver

Derivada como resolver

Mensagempor neoreload » Dom Mai 10, 2015 07:36

Como resolver essa:

Se w = cos(x ? y) + ln(x + y) , mostre que: Imagem

Infelizmente não tenho a resposta dessa.
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: Derivada como resolver

Mensagempor nakagumahissao » Qua Out 07, 2015 09:53

De acordo com as regras do site, você deveria ter colocado junto com o enunciado, tudo o que já tinha tentado fazer para resolver o problema e postar também em que ponto a dúvida surgiu e que dúvida era. Creio que por causa disso, acabou ficando sem uma resposta para a sua postagem. Na próxima vez, por favor não se esqueça de seguir o regulamento para não acontecer isto novamente.

Resolvendo seu problema agora, se ainda estiver interessado.

RESOLUÇÃO:

Basta que utilizemos as derivadas parciais primeira e segunda sobre a equação dada e mostrar que a diferença entre eles dará zero.

Assim, tirando as derivadas parciais primeira de w tem-se que:

w = \cos (x-y) + \ln (x + y)

\frac{\partial w}{\partial x} = -\sin (x - y) + \frac{1}{x + y}

\frac{\partial w}{\partial y} = \sin (x - y) + \frac{1}{x + y}


As segundas derivadas serão:

\frac{\partial^{2} w}{\partial x^{2}} = -\cos (x-y) - \frac{1}{(x+y)^{2}}

\frac{\partial^{2} w}{\partial y^{2}} = -\cos (x-y) - \frac{1}{(x+y)^{2}}

Assim, finalmente,

\frac{\partial^{2} w}{\partial x^{2}} - \frac{\partial^{2} w}{\partial y^{2}} = \left(-\cos (x-y) - \frac{1}{(x+y)^{2}} \right) - \left(-\cos (x-y) - \frac{1}{(x+y)^{2}} \right)

\frac{\partial^{2} w}{\partial x^{2}} - \frac{\partial^{2} w}{\partial y^{2}} = 0

Como queríamos demonstrar. \blacksquare
Eu faço a diferença. E você?

Do Poema: Quanto os professores "fazem"?
De Taylor Mali
nakagumahissao
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 386
Registrado em: Qua Abr 04, 2012 14:07
Localização: Brazil
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)