• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Análise Combinatória] Triângulo de Pascal

[Análise Combinatória] Triângulo de Pascal

Mensagempor Pessoa Estranha » Dom Mai 03, 2015 23:55

Olá, preciso muito de ajuda para resolver a seguinte questão:

Calcule \sum_{k=0}^{n} (k+1)C(n,k).

Muito Obrigada!
Pessoa Estranha
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 262
Registrado em: Ter Jul 16, 2013 16:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: [Análise Combinatória] Triângulo de Pascal

Mensagempor alexandre_de_melo » Qua Jul 29, 2015 22:46

\sum_{0}^{n}(k+1)\left(^n _k \right)=  \sum_{0}^{n}(k+1)\frac{n!}{k!(n-k)!}=\sum_{0}^{n}[k\frac{n!}{k!(n-k)!}+\frac{n!}{k!(n-k)!}]

=\sum_{1}^{n}[k\frac{n!}{k!(n-k)!}]+\sum_{0}^{n}[\frac{n!}{k!(n-k)!}] = \sum_{1}^{n}[\frac{n!}{(k-1)!(n-k)!}]+\sum_{0}^{n}[\frac{n!}{k!(n-k)!}]

=n\sum_{1}^{n}[\frac{(n-1)!}{(k-1)![(n-1)-(k-1)]!}]+\sum_{0}^{n}\left(^n _k \right)

=n\sum_{1}^{n}\left(^{n-1} _{k-1} \right)+ \sum_{0}^{n}\left(^n _k \right)

e usando a teoria de linhas, teremos:

n*2^{(n-1)}+2^n = 2^{(n-1)}(n+2)

Ufa!!!!!
Grande abraço!!!! Fuii!!!!!
alexandre_de_melo
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Ter Fev 25, 2014 12:00
Formação Escolar: GRADUAÇÃO
Área/Curso: Lic. em Matemática
Andamento: formado


Voltar para Análise Combinatória

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 0 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.