• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Determinar um Vetor

Determinar um Vetor

Mensagempor fernandosoares » Ter Abr 14, 2015 10:04

Bom dia

Gostaria de ajuda neste exercício, se possível enviar o processo de resolução.

Determine um vetor u tal que u.v = u.w=1 e IuI= raiz 22 onde v=(1,1,0) e w (2,1,-1)

Agradeço desde já.
fernandosoares
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Ter Abr 14, 2015 10:01
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecatrônica
Andamento: cursando

Re: Determinar um Vetor

Mensagempor DanielFerreira » Qua Abr 15, 2015 23:58

Olá Fernando, seja bem-vindo!

Seja \vec{u} = (a, b, c), de acordo com o enunciado,

\\ \begin{cases}(a, b, c) \cdot (1, 1, 0) = 1 \\ (a, b, c) \cdot (2, 1, - 1) = 1 \\ \sqrt{a^2 + b^2 + c^2} = \sqrt{22} \end{cases} \\\\\\ \begin{cases}a + b = 1 \\ 2a + b - c = 1 \\ a^2 + b^2 + c^2 = 22 \end{cases}

Da equação I, tiramos que \boxed{b = 1 - a};

Da equação II,

\\ 2a + b - c = 1 \\ a + \underbrace{(a + b)}_{1} - c = 1 \\ a + 1 - c = 1 \\ \boxed{a = c}

Substituindo-as na equação III,

\\ a^2 + b^2 + c^2 = 22 \\ a^2 +(1 - a)^2 + a^2 = 22 \\ a^2 + 1 - 2a + a^2 + a^2 = 22 \\ 3a^2 - 2a - 21 = 0 \\ 3a^2 - 9a + 7a - 21 = 0 \\ 3a(a - 3) + 7(a - 3) = 0 \\ (a - 3)(3a + 7) = 0 \\ \cdots

Fernando, tente concluir, ok?!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.