• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[GA] Ângulos entre planos

[GA] Ângulos entre planos

Mensagempor Larissa28 » Dom Abr 05, 2015 10:03

Calcule os ângulos entre os planos diagonais (planos determinados pelas arestas opostas) do paralelogramo em que quatro vértices consecutivos são O(0,0,0), A(1,0,0), B(1,1,0) e C(0,1,1).
Larissa28
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 41
Registrado em: Sáb Mar 21, 2015 17:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Eng. de Produção
Andamento: cursando

Re: [GA] Ângulos entre planos

Mensagempor adauto martins » Seg Abr 06, 2015 12:34

vamos tomar os planos diagonais do paralelogramo...
seja o plano determinado pelos pontos,OB, cujo vetor normal eh:
v=OBX(OA+OC)=i-j=(1,-1,0)seja o plano determ.por AC, cujo vetor normal eh:
[tex]w=OBX(OC-OA)=i-j+2k=(1,-1,2)...entao:
v.w=\left|v \right|\left|w \right|cos(v,w)\Rightarrow cos(v,w)=v.w/(\left|v \right|.\left|w \right|)=(1,-1,0)(1,-1,2)/(2\sqrt[]{2})=1+1+0/2\sqrt[]{2}=1/\sqrt[]{2}=\sqrt[]{2}/2\Rightarrow (v,w)=arcos(\sqrt[]{2}/2)=\pi/4\Rightarrow (v,w)=45°
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [GA] Ângulos entre planos

Mensagempor adauto martins » Qui Abr 09, 2015 16:32

oiii garota,essa minha soluçao nao esta correta,pois AC nao eh diagonal do paralelogramo solido...vou procurar resolve-lo e posto aqui,tbao...me desculpe...apareçaaaa...bons estudos
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [GA] Ângulos entre planos

Mensagempor adauto martins » Sex Abr 10, 2015 11:29

pelos dados do problema,temos q.
os ptos 0,A,B,C sao vertices de um pararalepido,mas o pto O,nao pertence a fase definida pelos ptos A,B,C...
pelo proprio enunciado podemops ter:D(0,0,1)eixo-z,E(0,1,0)eixo-y do pararalelpipedo,e esses ptos com os ptos dados sao suficientes p/resoluçao...
no primeiro octante temos:
ABCD definem uma face,OABE definem a fase no plano xy,logo...
os vetores OB,OC definem um plano diagonal,e AE,AC definem a outro plano diagonal...
logo, v=OBXOC...w=AEXAC...sao os vetores normais a esses planos diagonais...entao...v=OBXOC=
\begin{vmatrix}
   i & j & k \\ 
   1 & 1 & 0 \\
   0 & 1 & 1 \\
\end{vmatrix}=i-j+k=(1,-1,1)
w=AEXAC=\begin{vmatrix}
   i & j & k \\ 
   -1 & 1 & 0 \\
   -1 & 1 & 1 \\
\end{vmatrix}=i-j=(1,-1,0),entao...
v.w=\left|v \right|\left|w \right|cos(v,w)\Rightarrow cos(v,w)=v.w/(\left|v \right|\left|w \right|)
cos(v,w)=1.1+(-1).(-1)+1.0/(\sqrt[]{3}.\sqrt[]{2})=\Rightarrow (v,w)=arcos(2/\sqrt[]{6})
(u,w)\simeq 66°
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Geometria Analítica

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.