• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Indefinida

Integral Indefinida

Mensagempor grace kelly » Dom Mar 08, 2015 13:02

[Integrar a Função] Eu gostaria de saber como integrar essa fução \int_{}^{}\frac{m*V}{m*g-k*V}dV. A forma que eu usei foi a a regra da integral por partes e durante o processo eu fiz três integrais por partes até chegar na resposta final, mas o resultado não bateu. Não sei se eu usei a regra certa, mas esse método foi o que mais se aproximou da resposta correta. Resp.: \frac{m(m*g*ln(m*g-k*V)+k*V}{{k}^{2}}+C.
grace kelly
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 08, 2015 12:09
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando

Re: Integral Indefinida

Mensagempor Russman » Seg Mar 09, 2015 03:37

Você precisa calcular uma integral do tipo

I = \int \frac{x}{a+bx}dx.

Faça u(x) = a+bx. Daí, dx = \frac{1}{b} du e x = \frac{1}{b}(u-a).

Daí,

I= \int \frac{1}{b^2} \frac{u-a}{u} du=

= \frac{1}{b^2}\int du - \frac{a}{b^2}\int \frac{1}{u}du = \frac{u-a \ln (u)}{b^2} + c  =\frac{bx-a \ln (a+bx)}{b^2} + c
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}