• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral Indefinida

Integral Indefinida

Mensagempor grace kelly » Dom Mar 08, 2015 13:02

[Integrar a Função] Eu gostaria de saber como integrar essa fução \int_{}^{}\frac{m*V}{m*g-k*V}dV. A forma que eu usei foi a a regra da integral por partes e durante o processo eu fiz três integrais por partes até chegar na resposta final, mas o resultado não bateu. Não sei se eu usei a regra certa, mas esse método foi o que mais se aproximou da resposta correta. Resp.: \frac{m(m*g*ln(m*g-k*V)+k*V}{{k}^{2}}+C.
grace kelly
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mar 08, 2015 12:09
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia mecânica
Andamento: cursando

Re: Integral Indefinida

Mensagempor Russman » Seg Mar 09, 2015 03:37

Você precisa calcular uma integral do tipo

I = \int \frac{x}{a+bx}dx.

Faça u(x) = a+bx. Daí, dx = \frac{1}{b} du e x = \frac{1}{b}(u-a).

Daí,

I= \int \frac{1}{b^2} \frac{u-a}{u} du=

= \frac{1}{b^2}\int du - \frac{a}{b^2}\int \frac{1}{u}du = \frac{u-a \ln (u)}{b^2} + c  =\frac{bx-a \ln (a+bx)}{b^2} + c
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}